985 resultados para transfer reactions
Resumo:
An attempt has been made in this study to screen some fish muscle enzymes to assess their potential worth in testing the degree of freshness of fish. A problem with routine enzyme activity determinations is the complexity of the method of enzyme assay. Hence, in the present study as far as possible simple assay techniques were adopted. Several species were screened to assess the possibility of employing this procedure on a large scale. It is hoped that findings of this study will lead to the development of meaningful criteria in testing the freshness of fish. This thesis has been divided into five chapters
Resumo:
Urea-formaldehyde resins find numerous applications in adhesive, textile finishing and moulded plastic industries. Kinetic investigations of the reactions of urea and its related compounds with formaldehyde in aqueous acid, alkaline and neutral media have been carried out. A thin—layer chromatographic method was developed for the separation and estimation of the products of these reactions. Using this technique the various initial steps in the reactions were analysed and the rate constants have been determined.
Resumo:
Zeolites have established themselves as industrial catalysts for over two decades for a variety of hydrocarbon processing reactions where acidity and shape selectivity are important factors. As solid catalysts, zeolites may be advantageous and superior compared to their homogenous counterparts due to their characteristic properties. It is only in recent years that the utility of zeolites for organic synthesis is recognized for producing specific organic intermediates and fine chemicals in high selectivity. In this thesis an attempt has been made to compare the catalytic activity of some medium and large pore zeolites in a few alkylation and acylation reactions. The work reported in the present study is basically centered around the following zeolites namely, ZSM-5, mordenite, zeolite Y and beta. The major reactions carried out were benzoylation of o-xylene, propionylation of toluene and anisole and benzylation of oxylene. . The programme involves the synthesis, modifications and characterization of the zeolite catalysts by various methods. The influence of various parameters such as non-framework cations, Si/Al ratio of zeolites, temperature of the reaction, catalyst concentration, molar ratio of the reactants and recycling of the catalysts were also examined upon the conversion of reactants and the formation of the desired products in the alkylation/ acylation reactions. The general conclusions drawn by us from the results obtained are summarized in the last chapter of the thesis. Zeolite beta ofi'ers interesting opportunities as a potential catalyst in alkylation reactions and the area of catalysis by medium and large pore zeolites is very fascinating and there is plenty of scope for further research in this field. Moreover, zeolite based catalysts are effective in meeting current industrial processing and more stringent environment pollution limits.
Resumo:
Burgess reagent first prepared by E. M. Burgess in 1968, is a mild and selective dehydrating agent for secondary and tertiary alcohols and due to the amphipolar nature it is gainfully employed in a number of creative synthetic ventures. A close examination of the structure of Burgess reagent reveals that it can act as a 1,2-dipole. To the best of our knowledge, no attempts have been made to tap full synthetic potential of the amphipolar nature of this reagent and no reports on 1,3-dipolar addition to a σ-bond in acyclic systems are available in literature. In this context, we propose to unravel novel applications of Burgess reagent based on its amphipolar nature. Rich and multifaceted chemistry of nitrones form the basis of many successful chemical transformations used in attractive synthetic strategies. For the last 50 years special attention has been given to nitrones due to their successful application as building blocks in the synthesis of various natural and biologically active compounds. Our interest in nitrones stems out of its unique character: i.e. it is a 1,3-dipole exhibiting distinct nucleophilic activity. We reasoned that 1,3-dipole possessing significant nucleophilicity should react with amphipolar Burgess reagent with elimination of triethylamine to give the corresponding five-membered ring product by formal dipolar addition to a σ bond. To test this hypothesis we studied the reaction of nitrones with Burgess reagent. This thesis reveals our attempts to explore the [3+2] annulation reaction of nitrones with Burgess reagent which was found to be followed by a rearrangementinvolving C-to-N aryl migration, ultimately resulting in diarylamines and carbamates. We have also examined the reaction of cyanuric chloride with nitrones in DMF with a view to exploit the nucleophilicty of nitrones and to unravel the migratory aptitude, if any, observed in this reaction
Resumo:
The thesis entitled “Exploration of Novel Organic Reactions Catalyzed by Nucleophilic Heterocyclic Carbenes (NHCs)” embodies the results of the investigations carried out to explore the synthetic potential of N–heterocyclic carbenes (NHCs) as organocatalyst towards various electrophiles for the synthesis of heterocyclic and carbocyclic systems. Recent investigations in the generation of homoenolates by the addition of NHCs to conjugated aldehydes have made it possible to study the reactivity of this unique three carbon synthon.
Resumo:
The resurgence of the enteric pathogen Vibrio cholerae, the causative organism of epidemic cholera, remains a major health problem in many developing countries like India. The southern Indian state of Kerala is endemic to cholera. The outbreaks of cholera follow a seasonal pattern in regions of endemicity. Marine aquaculture settings and mangrove environments of Kerala serve as reservoirs for V. cholerae. The non-O1/non-O139 environmental isolates of V. cholerae with incomplete ‘virulence casette’ are to be dealt with caution as they constitute a major reservoir of diverse virulence genes in the marine environment and play a crucial role in pathogenicity and horizontal gene transfer. The genes coding cholera toxin are borne on, and can be infectiously transmitted by CTXΦ, a filamentous lysogenic vibriophages. Temperate phages can provide crucial virulence and fitness factors affecting cell metabolism, bacterial adhesion, colonization, immunity, antibiotic resistance and serum resistance. The present study was an attempt to screen the marine environments like aquafarms and mangroves of coastal areas of Alappuzha and Cochin, Kerala for the presence of lysogenic V. cholerae, to study their pathogenicity and also gene transfer potential. Phenotypic and molecular methods were used for identification of isolates as V. cholerae. The thirty one isolates which were Gram negative, oxidase positive, fermentative, with or without gas production on MOF media and which showed yellow coloured colonies on TCBS (Thiosulfate Citrate Bile salt Sucrose) agar were segregated as vibrios. Twenty two environmental V. cholerae strains of both O1 and non- O1/non-O139 serogroups on induction with mitomycin C showed the presence of lysogenic phages. They produced characteristic turbid plaques in double agar overlay assay using the indicator strain V. cholerae El Tor MAK 757. PCR based molecular typing with primers targeting specific conserved sequences in the bacterial genome, demonstrated genetic diversity among these lysogen containing non-O1 V. cholerae . Polymerase chain reaction was also employed as a rapid screening method to verify the presence of 9 virulence genes namely, ctxA, ctxB, ace, hlyA, toxR, zot,tcpA, ninT and nanH, using gene specific primers. The presence of tcpA gene in ALPVC3 was alarming, as it indicates the possibility of an epidemic by accepting the cholera. Differential induction studies used ΦALPVC3, ΦALPVC11, ΦALPVC12 and ΦEKM14, underlining the possibility of prophage induction in natural ecosystems, due to abiotic factors like antibiotics, pollutants, temperature and UV. The efficiency of induction of prophages varied considerably in response to the different induction agents. The growth curve of lysogenic V. cholerae used in the study drastically varied in the presence of strong prophage inducers like antibiotics and UV. Bacterial cell lysis was directly proportional to increase in phage number due to induction. Morphological characterization of vibriophages by Transmission Electron Microscopy revealed hexagonal heads for all the four phages. Vibriophage ΦALPVC3 exhibited isometric and contractile tails characteristic of family Myoviridae, while phages ΦALPVC11 and ΦALPVC12 demonstrated the typical hexagonal head and non-contractile tail of family Siphoviridae. ΦEKM14, the podophage was distinguished by short non-contractile tail and icosahedral head. This work demonstrated that environmental parameters can influence the viability and cell adsorption rates of V. cholerae phages. Adsorption studies showed 100% adsorption of ΦALPVC3 ΦALPVC11, ΦALPVC12 and ΦEKM14 after 25, 30, 40 and 35 minutes respectively. Exposure to high temperatures ranging from 50ºC to 100ºC drastically reduced phage viability. The optimum concentration of NaCl required for survival of vibriophages except ΦEKM14 was 0.5 M and that for ΦEKM14 was 1M NaCl. Survival of phage particles was maximum at pH 7-8. V. cholerae is assumed to have existed long before their human host and so the pathogenic clones may have evolved from aquatic forms which later colonized the human intestine by progressive acquisition of genes. This is supported by the fact that the vast majority of V. cholerae strains are still part of the natural aquatic environment. CTXΦ has played a critical role in the evolution of the pathogenicity of V. cholerae as it can transmit the ctxAB gene. The unusual transformation of V. cholerae strains associated with epidemics and the emergence of V. cholera O139 demonstrates the evolutionary success of the organism in attaining greater fitness. Genetic changes in pathogenic V. cholerae constitute a natural process for developing immunity within an endemically infected population. The alternative hosts and lysogenic environmental V. cholerae strains may potentially act as cofactors in promoting cholera phage ‘‘blooms’’ within aquatic environments, thereby influencing transmission of phage sensitive, pathogenic V. cholerae strains by aquatic vehicles. Differential induction of the phages is a clear indication of the impact of environmental pollution and global changes on phage induction. The development of molecular biology techniques offered an accessible gateway for investigating the molecular events leading to genetic diversity in the marine environment. Using nucleic acids as targets, the methods of fingerprinting like ERIC PCR and BOX PCR, revealed that the marine environment harbours potentially pathogenic group of bacteria with genetic diversity. The distribution of virulence associated genes in the environmental isolates of V. cholerae provides tangible material for further investigation. Nucleotide and protein sequence analysis alongwith protein structure prediction aids in better understanding of the variation inalleles of same gene in different ecological niche and its impact on the protein structure for attaining greater fitness of pathogens. The evidences of the co-evolution of virulence genes in toxigenic V. cholerae O1 from different lineages of environmental non-O1 strains is alarming. Transduction studies would indicate that the phenomenon of acquisition of these virulence genes by lateral gene transfer, although rare, is not quite uncommon amongst non-O1/non-O139 V. cholerae and it has a key role in diversification. All these considerations justify the need for an integrated approach towards the development of an effective surveillance system to monitor evolution of V. cholerae strains with epidemic potential. Results presented in this study, if considered together with the mechanism proposed as above, would strongly suggest that the bacteriophage also intervenes as a variable in shaping the cholera bacterium, which cannot be ignored and hinting at imminent future epidemics.
Resumo:
The influence of the occupation of the single particle levels on the impact parameter dependent K - K charge transfer occuring in collisions of 90 keV Ne{^9+} on Ne was studied using coupled channel calculations. The energy eigenvalues and matrixelements for the single particle levels were taken from ab initio self consistent MO-LCAO-DIRAC-FOCK-SLATER calculations with occupation numbers corresponding to the single particle amplitudes given by the coupled channel calculations.
Resumo:
Using the single-particle amplitudes from a 20-level coupled-channel calculation with ab initio relativistic self consistent LCAO-MO Dirac-Fock-Slater energy eigenvalues and matrix elements we calculate within the frame of the inclusive probability formalism impact-parameter-dependent K-hole transfer probabilities. As an example we show results for the heavy asymmetric collision system S{^15+} on Ar for impact energies from 4.7 to 16 MeV. The inclusive probability formalism which reinstates the many-particle aspect of the collision system permits a qualitative and quantitative agreement with the experiment which is not achieved by the single-particle picture.
Resumo:
Standard redox potentials E^0(M^z+x/M^z+) in acidic solutions for group 5 elements including element 105 (Ha) and the actinide, Pa, have been estimated on the basis of the ionization potentials calculated via the multiconfiguration Dirac-Fock method. Stability of the pentavalent state was shown to increase along the group from V to Ha, while that of the tetra- and trivalent states decreases in this direction. Our estimates have shown no extra stability of the trivalent state of hahnium. Element 105 should form mixed-valence complexes by analogy with Nb due to the similar values of their potentials E^0(M^3+/M^2+). The stability of the maximumoxidation state of the elements decreases in the direction 103 > 104 > 105.