981 resultados para tau


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Glutathione transferases (GSTs) are a diverse family of enzymes that catalyze the glutathione-dependent detoxification of toxic compounds. GSTs are responsible for the conjugation of the tripeptide glutathione (GSH) to a wide range of electrophilic substrates. These include industrial pollutants, drugs, genotoxic carcinogen metabolites, antibiotics, insecticides and herbicides. In light of applications in biomedicine and biotechnology as cellular detoxification agents, detailed structural and functional studies of GSTs are required. Plant tau class GSTs play crucial catalytic and non-catalytic roles in cellular xenobiotic detoxification process in agronomically important crops. The abundant existence of GSTs in Glycine max and their ability to provide resistance to abiotic and biotic stresses such as herbicide tolerance is of great interest in agriculture because they provide effective and suitable tools for selective weed control. Structural and catalytic studies on tau class GST isoenzymes from Glycine max (GmGSTU10-10, GmGSTU chimeric clone 14 (Sh14), and GmGSTU2-2) were performed. Crystal structures of GmGSTU10-10 in complex with glutathione sulfenic acid (GSOH) and Sh14 in complex with S-(p-nitrobenzyl)-glutathione (Nb-GSH) were determined by molecular replacement at 1.6 Å and 1.75 Å, respectively. Major structural variations that affect substrate recognition and catalytic mechanism were revealed in the upper part of helix H4 and helix H9 of GmGSTU10-10. Structural analysis of Sh14 showed that the Trp114Cys point mutation is responsible for the enhanced catalytic activity of the enzyme. Furthermore, two salt bridges that trigger an allosteric effect between the H-sites were identified at the dimer interface between Glu66 and Lys104. The 3D structure of GmGSTU2-2 was predicted using homology modeling. Structural and phylogenetic analysis suggested GmGSTU2-2 shares residues that are crucial for the catalytic activity of other tau class GSTs–Phe10, Trp11, Ser13, Arg20, Tyr30, Leu37, Lys40, Lys53, Ile54, Glu66 and Ser67. This indicates that the catalytic and ligand binding site in GmGSTU2-2 are well-conserved. Nevertheless, at the ligandin binding site a significant variation was observed. Tyr32 is replaced by Ser32 in GmGSTU2-2 and thismay affect the ligand recognition and binding properties of GmGSTU2-2. Moreover, docking studies revealed important amino acid residues in the hydrophobic binding site that can affect the substrate specificity of the enzyme. Phe10, Pro12, Phe15, Leu37, Phe107, Trp114, Trp163, Phe208, Ile212, and Phe216 could form the hydrophobic ligand binding site and bind fluorodifen. Additionally, side chains of Arg111 and Lys215 could stabilize the binding through hydrogen bonds with the –NO2 groups of fluorodifen. GST gene family from the pathogenic soil bacterium Agrobacterium tumefaciens C58 was characterized and eight GST-like proteins in A. tumefaciens (AtuGSTs) were identified. Phylogenetic analysis revealed that four members of AtuGSTs belong to a previously recognized bacterial beta GST class and one member to theta class. Nevertheless, three AtuGSTs do not belong to any previously known GST classes. The 3D structures of AtuGSTs were predicted using homology modeling. Comparative structural and sequence analysis of the AtuGSTs showed local sequence and structural characteristics between different GST isoenzymes and classes. Interactions at the G-site are conserved, however, significant variations were seen at the active site and the H5b helix at the C-terminal domain. H5b contributes to the formation of the hydrophobic ligand binding site and is responsible for recognition of the electrophilic moiety of the xenobiotic. It is noted that the position of H5b varies among models, thus providing different specificities. Moreover, AtuGSTs appear to form functional dimers through diverse modes. AtuGST1, AtuGST3, AtuGST4 and AtuGST8 use hydrophobic ‘lock–and–key’-like motifs whereas the dimer interface of AtuGST2, AtuGST5, AtuGST6 and AtuGST7 is dominated by polar interactions. These results suggested that AtuGSTs could be involved in a broad range of biological functions including stress tolerance and detoxification of toxic compounds.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Alzheimer's disease is the most common type of dementia in the elderly; it is characterized by early deficits in learning and memory formation and ultimately leads to a generalised loss of higher cognitive functions. While amyloid beta (Aβ) and tau are traditionally associated with the development of Alzheimer disease, recent studies suggest that other factors, like the intracellular domain (APP-ICD) of the amyloid precursor protein (APP), could play a role. In this study, we investigated whether APP-ICD could affect synaptic transmission and synaptic plasticity in the hippocampus, which is involved in learning and memory processes. Our results indicated that overexpression of APP-ICD in hippocampal CA1 neurons leads to a decrease in evoked AMPA-receptor and NMDA-receptor dependent synaptic transmission. Our study demonstrated that this effect is specific for APP-ICD since its closest homologue APLP2-ICD did not reproduce this effect. In addition, APP-ICD blocks the induction of long term potentiation (LTP) and leads to increased of expression and facilitated induction of long term depression (LTD), while APLP2-ICD shows neither of these effects. Our study showed that this difference observed in synaptic transmission and plasticity between the two intracellular domains resides in the difference of one alanine in the APP-ICD versus a proline in the APLP2-ICD. Exchanging this critical amino-acid through point-mutation, we observed that APP(PAV)-ICD had no longer an effect on synaptic plasticity. We also demonstrated that APLP2(AAV)-ICD mimic the effect of APP-ICD in regards of facilitated LTD. Next we showed that the full length APP-APLP2-APP (APP with a substitution of the Aβ component for its homologous APLP2 part) had no effect on synaptic transmission or synaptic plasticity when compared to the APP-ICD. However, by activating caspase cleavage prior to induction of LTD or LTP, we observed an LTD facilitation and a block of LTP with APP-APLP2-APP, effects that were not seen with the full length APLP2 protein. APP is phosphorylated at threonine 668 (Thr668), which is localized directly after the aforementioned critical alanine and the caspase cleavage site in APP-APLP2-APP. Mutating this Thr668 for an alanine abolishes the effects on LTD and restores LTP induction. Finally, we showed that the facilitation of LTD with APP-APLP2-APP involves ryanodine receptor dependent calcium release from intracellular stores. Taken together, we propose the emergence of a new APP intracellular domain, which plays a critical role in the regulation of synaptic plasticity and by extension, could play a role in the development of memory loss in Alzheimer’s disease.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A novel method to measure oxidative stress resulting from exhaustive exercise in rats is presented. In this new procedure we evaluated the erythrocyte antioxidant enzymes, catalase ( CAT) and glutathione reductase (GR), the plasma oxidative attack markers, reactive carbonyl derivatives (RCD) and thiobarbituric reactive substances (TBARS). Muscular tissue damage was evaluated by monitoring plasma creatine kinase (CK) and plasma taurine ( Tau) concentrations. Also, we monitored total sulphydryl groups (TSG) and uric acid (UA), and the level of the 70 kDa heat shock protein (HSP70) in leukocytes as a marker of oxidative stress. In the study we found a correspondence between erythrocyte CAT and GR activities and leukocyte HSP70 levels, principally 3 h after the acute exercise, and this suggested an integrated mechanism of antioxidant defense. The increase in levels of plasma Tau was coincident with the increasing plasma levels of CK and TBARS, principally after two hours of exercise. Thus tissue damage occurred before the expression of any anti-oxidant system markers and the monitoring of Tau, CK or TBARS may be important for the estimation of oxidative stress during exhaustive exercise. Furthermore, the integrated analyses could be of value in a clinical setting to quantify the extent of oxidative stress risk and reduce the need to perform muscle biopsies as a tool of clinical evaluation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This randomized controlled trial was performed to investigate whether placebo effects in chronic low back pain could be harnessed ethically by adding open-label placebo (OLP) treatment to treatment as usual (TAU) for 3 weeks. Pain severity was assessed on three 0- to 10-point Numeric Rating Scales, scoring maximum pain, minimum pain, and usual pain, and a composite, primary outcome, total pain score. Our other primary outcome was back-related dysfunction, assessed on the Roland-Morris Disability Questionnaire. In an exploratory follow-up, participants on TAU received placebo pills for 3 additional weeks. We randomized 97 adults reporting persistent low back pain for more than 3 months' duration and diagnosed by a board-certified pain specialist. Eighty-three adults completed the trial. Compared to TAU, OLP elicited greater pain reduction on each of the three 0- to 10-point Numeric Rating Scales and on the 0- to 10-point composite pain scale (P < 0.001), with moderate to large effect sizes. Pain reduction on the composite Numeric Rating Scales was 1.5 (95% confidence interval: 1.0-2.0) in the OLP group and 0.2 (-0.3 to 0.8) in the TAU group. Open-label placebo treatment also reduced disability compared to TAU (P < 0.001), with a large effect size. Improvement in disability scores was 2.9 (1.7-4.0) in the OLP group and 0.0 (-1.1 to 1.2) in the TAU group. After being switched to OLP, the TAU group showed significant reductions in both pain (1.5, 0.8-2.3) and disability (3.4, 2.2-4.5). Our findings suggest that OLP pills presented in a positive context may be helpful in chronic low back pain.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

O-GlcNAc glycosylation of nuclear and cytosolic proteins is an essential post-translational modification implicated in many diseases, from cancer to diabetes. Importantly, many important neuronal proteins are also O-GlcNAc modified, and aberrant O-GlcNAcylation of these proteins may contribute to the pathology of neurodegenerative diseases although these mechanisms have not been well defined. Here we investigated the role of O-GlcNAc glycosylation in the brain, utilizing both chemistry and molecular biology to study O-GlcNAc transferase (OGT), the enzyme that adds the sugar modification. To evaluate the role of OGT in adult neurons, we generated a forebrain-specific conditional knockout of OGT (OGT cKO) in mice. Although indistinguishable from wild-type littermates at birth, after three weeks we observe progressive neurodegeneration in OGT cKO mice. Hallmarks of Alzheimer’s disease, including neuronal loss, neuroinflammation, behavioral deficits, hyperphosphorylated tau, and amyloid beta peptide accumulation, are observed. Furthermore, decreases in OGT protein levels were found in human AD brain tissue, suggesting that altered O-GlcNAcylation likely contributes to neurodegenerative diseases in humans. This model is one of a few mouse models that recapitulate AD phenotypes without mutating and overexpressing human tau, amyloid precursor protein, or presenilin, highlighting the essential role of OGT in neurodegenerative pathways.

Given the importance of OGT in the brain, we further investigated the regulation of the OGT enzyme by phosphorylation. We found that phosphorylation of OGT near its C-terminus reduces its activity in cancer cells, and have developed phosphorylation-specific antibodies to aid mechanistic studies. Furthermore, mutation of this phosphorylation site on OGT, followed by overexpression in neurons was shown to enhance neurite outgrowth, demonstrating a functional consequence for this site. Thus phosphorylation of OGT inhibits its activity and enhances neurite outgrowth, and current studies aim to characterize the signaling pathway that regulates OGT phosphorylation in neurons.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A demanda por óleos vegetais tem aumentado no mundo. O tucumã (Astrocaryum vulgare Mart), que é uma palmeira nativa da Amazônia, é uma alternativa para a produção de óleo. No Pará, a camada superficial do solo, que é comumente utilizada como substrato para a formação de mudas, geralmente apresenta acidez elevada e baixa disponibilidade de fósforo (P). Diante do exposto, objetivou-se estimar o efeito da calagem e da adubação fosfatada no desenvolvimento de mudas de tucumã. O delineamento experimental foi o inteiramente casualizado, com seis repetições, em esquema fatorial 4 x 6, correspondendo a quatro níveis de saturação por bases (V) (13, 40, 65 e 90 %) e seis doses de P (0, 30, 60, 120, 240 e 480 mg dm-3). O experimento foi desenvolvido em viveiro da empresa Dentauá, em Santo Antônio do Tauá, Pará. As plantas foram cultivadas por 350 dias, em sacos de polietileno preto e perfurado, contendo 3,0 dm-3 de substrato. Observou-se interação entre níveis de V e doses de P apenas para a massa de matéria seca de parte aérea, de raiz e total, que aumentaram em resposta à aplicação de doses de calcário e fertilizante fosfatado. A calagem e a adubação fosfatada aumentaram o diâmetro do coleto e número total de folhas, mas não influenciaram a altura da planta e o índice SPAD. A correção da acidez do solo e o fornecimento de P melhoraram o desenvolvimento de mudas de tucumã.