981 resultados para superoxide anion scavenging activity
Resumo:
Hyperglycemia induces overproduction of superoxide and it is related to diabetic complications. In this study, we analyzed the antioxidant enzymatic defense and the lipid peroxidation of rat salivary glands in six different periods of diabetic condition. Ninety-six rats were divided into 12 groups: C7/14/21128/45/60 (non-diabetic animals) and D7/14/21/28/45/60 (diabetic animals). Diabetes was induced by streptozotocin and the rats were euthanized after 7, 14, 21, 28, 45, or 60 days. Their parotid (PA) and submandibular (SM) glands were removed soon after the sacrifice and the total protein and malondialdehyde (MDA) concentrations, as well as, the superoxide dismutase (SOD), glutathione peroxidase (GPx), and catalase (CAT) activities were determined. Twenty-one days after the diabetes induction, the SM glands showed an increase in SOD, CAT, and GPx activities, as well as, MDA concentration. Concerning the PA glands, an increase in the CAT activity and MDA content was observed throughout the observation period. The results suggest that diabetes can cause alterations on the salivary glands and that PA and SM glands react differently when exposed to diabetes condition. However, no impairment of antioxidant system was observed in the group whose diabetic condition had been induced 60 days earlier, herein named 60-day group. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Diabetes has been implicated in the dryness of the mouth, loss of taste sensation, sialosis, and other disorders of the oral cavity, by impairment of the salivary glands. The aim of the present study was to examine the plasma membrane, microsomal, and homogenate Ca(2+)-ATPase activity in the rat submandibular and parotid salivary glands of streptozotocin-induced diabetes. We have also examined the influence of the acidosis state oil this parameter. Diabetes was induced by an intraperitoneal injection of streptozotocin and acidosis was induced by daily injection of NH(4)Cl. At 15 and 30 days after diabetes induction, the animals were euthanized and the submandibular and parotid salivary glands were removed and analyzed. Ca(2+)-ATPase (total, independent, and dependent) was determined in the homo-enate, microsomal, and plasma membranes of the salivary glands of diabetic and control rats. Calcium concentration was also determined in the glands and showed to be hi-her in the diabetic animals. Ca(2+)-ATPase activity was found to be reduced in all cell fractions studied in the diabetic animals compared with control. Similar results were obtained for the submandibular salivary glands of acidotic animals; however in the parotid salivary glands it was found an increase in the enzyme activity. Copyright (c) 2009 John Wiley & Sons, Ltd.
Resumo:
Metalloproteinases (MMPs) have been implicated with metabolism of collagen in physiological and pathological processes in human dentine. As bovine teeth have been used as a substitute for human teeth in laboratory analysis, this study evaluated the activity of MMP-2 and -9 in bovine versus human dentine. Bovine and human dentine fragments, from crowns and roots, were powderized. Protein extraction was performed by two protocols: a neutral extraction with guanidine-HCl/EDTA (pH 7.4) and an acidic extraction with citric acid (pH 2.3). Gelatinolytic activities of extracts were revealed by zymography. MMP-2 and -9 were detected in crown and root dentine from bovine and human teeth. Total activities of MMP-2 were 11.4 +/- 2.2, 14.6 +/- 2.0, 9.7 +/- 1.2 and 12.4 +/- 0.9 ng/ml for bovine root, human root, bovine crown and human crown dentine, respectively. Corresponding activities for MMP-9 were 14.9 +/- 2.0, 15.3 +/- 1.3, 15.4 +/- 1.3 and 15.5 +/- 1.3 ng/ml, respectively. Bovine dentine was found to be a reliable substrate for studies involving the activity of MMP-2 and -9. Copyright (C) 2011 S. Karger AG, Basel
Resumo:
Aim: In the Amazon region of Brazil, the fruits of Caesalpinia ferrea Martius (Brazilian ironwood) are widely used as an antimicrobial and healing medicine in many situations including oral infections. This study aimed to evaluate the antimicrobial activity of Caesalpinia ferrea Martius fruit extract against oral pathogens. Materials and methods: Polyphenols estimation and spectral analysis ((1)H NMR) of the methanol extract were carried out. The microorganisms Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were tested using the microdilution method for planktonic cells (MIC) and a multispecies biofilm model. Chlorhexidine was used as positive control. Results: Polyphenols in the extract were estimated at 7.3% and (1)H NMR analysis revealed hydroxy phenols and methoxilated compounds. MIC values for Candida albicans, Streptococcus mutans, Streptococcus salivarius, Streptococcus oralis and Lactobacillus casei were 25.0, 40.0, 66.0, 100.0, 66.0 mu g/mL, respectively. For the biofilm assay, chlorhexidine and plant extract showed no growth at 10(-4) and 10(-5) microbial dilution, respectively. At 10-4 and 10-5 the growth values (mean +/- SD) of the negative controls (DMSO and saline solution) for Streptococcus mutans, Streptococcus sp. and Candida albicans were 8.1 +/- 0.7, 7.0 +/- 0.6 and 5.9 +/- 0.9 x 10(6) CFU, respectively. Conclusion: Caesalpinia ferrea fruit extract can inhibit in vitro growth of oral pathogens in planktonic and biofilm models supporting its use for oral infections. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Objective: Low molecular weight protein tyrosine phosphatases (LMW-PTPs) are a family of enzymes strongly involved in the regulation of cell growth and differentiation. Since there is no information concerning the relationship between osteoblastic differentiation and LMW-PTP expression/activity, we investigated its involvement during human osteoblast-like cells (hFOB 1.19) differentiation. It is known that LMW-PTP is regulated by an elegant redox mechanism, so we also observed how the osteoblastic differentiation affected the reduced glutathione levels. Design: hFOB 1.19 cells were cultured in DMEM/F12 up to 35 days. The osteoblast phenotype acquisition was monitored by measuring alkaline phosphatase activity and mineralized nodule formation by Von Kossa staining. LMW-PTP activity and expression were measured using the p-nitrophenylphosphate as substrate and Western blotting respectively. Crystal violet assay determined the cell number in each experimental point. Glutathione level was determined by both HPLC and DNTB assays. Results: LMW-PTP modulation was coincident with the osteoblastic differentiation biomarkers, such as alkaline phosphatase activity and presence of nodules of mineralization in Vitro. Likewise LMW-PTP, the reduced glutathione-dependent microenvironment was modulated during osteoblastic differentiation. During this process, LMW-PTP expression/activity, as well as alkaline phosphatase and glutathione increased progressively up to the 21st day (p < 0.001) of culturing, decreasing thereafter. Conclusions: Our results clearly suggest that LMW-PTP expression/activity was rigorously modulated during osteoblastic differentiation, possibly in response to the redox status of the cells, since it seems to depend on suitable levels of reduced glutathione. in this way, we pointed out LMW-PTP as an important signaling molecule in osteoblast biology and bone formation. (C) 2009 Elsevier Ltd. All rights reserved.