985 resultados para solution affinity assay
Resumo:
Affinity chromatography is unique among separation methods as it is the only technique that permits the purification of proteins based on biological functions rather than individual physical or chemical properties. The high specificity of affinity chromatography is due to the strong interaction between the ligand and the proteins of interest. Membrane separation allows the processing of a large amount of sample in a relatively short time owing to its structure, which provides a system with rapid reaction kinetics. The integration of membrane and affinity chromatography provides a number of advantages over traditional affinity chromatography with porous-bead packed columns, especially with regard to time and recovery of activity. This review gives detailed descriptions of materials used as membrane substrates, preparation of basic membranes, coupling of affinity ligands to membrane supports, and categories of affinity membrane cartridges. It also summarizes the applications of cellulose/glycidyl methacrylate composite membranes for proteins separation developed in our laboratory. (C) 2001 Elsevier Science B.V. All rights reserved.
Resumo:
Capillary zone electrophoresis (CZE) and affinity capillary electrophoresis (ACE) were applied to study the interaction between netropsin and a 14mer double-stranded DNA (dsDNA). The use of a polyacrylamide coated capillary can suppress the electroosmotic flow (EOF) and the adsorption of DNA onto the wall. Better analysis of the DNA was achieved in a coated capillary upon Tris-acetate. In CZE, the peak width broadened due to the affinity interaction between dsDNA and netropsin. In ACE, o-toluic acid, a negatively charged molecule was used as the indicator to monitor the changes of EOF when netropsin was added to the running buffer. The 14mer dsDNA showed different mobilities upon various concentrations of netropsin due to the affinity interaction between the dsDNA and netropsin. The binding constants of this interaction were (1.07 +/- 0.10) . 10(5) M-1 calculated from CZE and (4.75 +/- 0.30) . 10(4) M-1 from ACE using a Scatchard plot. The binding stoichiometry was 1:1 calculated from CZE which was superior to ACE in this study. (C) 2002 Elsevier Science B.V. All rights reserved.
Resumo:
Monolithic capillary columns for affinity chromatography were prepared by an in situ polymerization procedure using glycidyl methacrylate (GMA) as a monomer and trimethylolpropane trimethacrylate (TRIM) and ethylene dimethacrylate (EDMA) as cross-linkers, respectively. Scanning electron microscopy was applied to characterize the morphology of the end of monolithic capillary and mercury intrusion porosimetry to characterize the polymer rod prepared within the confines of a stainless steel column with 50 mm x 4.6 mm i.d. under the same polymerization condition. Obvious differences in the porous properties between the TRIM- and EDMA-based monoliths could be observed. Moreover, the mechanical stability of these two monolithic capillary columns was compared by testing the reproducibility of the column performance. The rod prepared with GMA and TRIM proved to be mechanically more stable than that prepared with GMA and EDMA. Protein A was immobilized on the monolithic rod for affinity chromatography and the experiments were performed on a capillary electrophoresis instrument, using its pressure system as the driving force. Non-specific adsorption was not observed on the TRIM-based affinity column, as proved with bovine serum albumin (BSA) as a test protein. The affinity column prepared with GMA and TRIM was then applied to determine the hIgG concentration in human serum. The correlative coefficient of the calibration curve reached 0.9942. The amount of adsorbed hIgG was unaffected by the flow rate of the loading buffer, which makes this method suitable for fast determination of biomacromolecules in microliter samples. (C) 2002 Elsevier Science B.V All rights reserved.
Resumo:
A new class of ionophores with troponoid and thiocrown ether units was prepared. Cation-binding properties of troponoid dithiocrown ethers were characterized using UV and NMR spectroscopies. They have affinity with metal ions; in particular, they showed high affinity with Hg2+. Transport of Hg2+ through a CHCl3 liquid membrane with troponoid dithiocrown ethers was examined in a U-type cell. From an aqueous solution of HgCl2 and CuCl2, Hg2+ is transferred selectively and smoothly, while the Cu2+ remained quantitatively in the original solution. The cavity size of dithiocrown ethers is one of the requirements for effective extraction and transport of Hg2+. However, derivatives with a smaller cavity still extract and transport Hg2+. A polymer-supported troponoid dithiocrown ether was prepared to transport Hg2+ effectively and repeatedly. Comparing the troponoid dithiocrown ether with the benzenoid dithiocrown ether with a similar cavity size, the former was more effective for the transport of Hg2+. It is proposed that the tropone ring assisted the release of Hg2+ from the complex by Coulomb repulsion between the protonated tropone ring and Hg2+.
Resumo:
A bipolar transport compound, 2,5-bis(4-(9-(2-ethylhexyl)-9H-carbazol-3-yl) phenyl)-1,3,4-oxadiazole (CzOXD), incorporating both electron-and hole-transport functionalities, was synthesized and fully characterized by H-1 NMR, C-13 NMR, elemental analysis and mass spectrometry. Its thermal, electrochemical, electronic absorption and photoluminescent properties were studied
Resumo:
With the goal to provide organometallic triplet emitters with good hole-injection/hole-transporting properties, highly amorphous character for simple solution-processed organic light-emitting diodes, and negligible triplet-triplet (T-T) annihilation, a series of new phosphorescent cyclometalated Ir-III and Pt-II complexes with triphenylamine-anchored fluorenylpyridine dendritic ligands were synthesized and characterized. The photophysical, thermal, electrochemical and electroluminescent properties of these molecules are reported.
Resumo:
The electrochemical corrosion behavior of Mg-6Al-0.4Mn and Mg-6Al-4RE-0.4Mn (RE = Mischmetal) alloys is investigated in 3.5% NaCl solution. The results of corrosion process, polarization behavior, and electrochemical impedance spectroscopy of the alloys reveal that Mg-6Al-4RE-0.4Mn exhibits enhanced corrosion resistance. The addition of RE stabilizes the solid solution and modifies the passive film through a finer microstructure.