1000 resultados para solution adhesives
Resumo:
Many of the physiological functions of von Willebrand Factor (VWF), including its binding interaction with blood platelets, are regulated by the magnitude of applied fluid/hydrodynamic stress. We applied two complementary strategies to study the effect of fluid forces on the solution structure of VWF. First, small-angle neutron scattering was used to measure protein conformation changes in response to laminar shear rates (G) up to 3000/s. Here, purified VWF was sheared in a quartz Couette cell and protein conformation was measured in real time over length scales from 2-140 nm. Second, changes in VWF structure up to 9600/s were quantified by measuring the binding of a fluorescent probe 1,1'-bis(anilino)-4-,4'-bis(naphtalene)-8,8'-disulfonate (bis-ANS) to hydrophobic pockets exposed in the sheared protein. Small angle neutron scattering studies, coupled with quantitative modeling, showed that VWF undergoes structural changes at G < 3000/s. These changes were most prominent at length scales <10 nm (scattering vector (q) range >0.6/nm). A mathematical model attributes these changes to the rearrangement of domain level features within the globular section of the protein. Studies with bis-ANS demonstrated marked increase in bis-ANS binding at G > 2300/s. Together, the data suggest that local rearrangements at the domain level may precede changes at larger-length scales that accompany exposure of protein hydrophobic pockets. Changes in VWF conformation reported here likely regulate protein function in response to fluid shear.
Resumo:
The dimensions and cavity sizes of the molecular capsules with the general formula [V10O18L4]10− can be controlled modularly through the nature of the bifunctional, rigid organophosphonate ligands L1 and L2 (L1 = bis(4-phosphonatophenyl)ethyne and L2 = bis(4-phosphonatophenyl)butadiyne); the solution stability of the molecular entities as demonstrated by ESI-MS studies permits their assembly on the Au(111) surface on a sub-monolayer scale giving rise to a 2D supramolecular structure that is comparable to the packing arrangements of the capsules in the crystal structures.
Resumo:
Pressure-sensitive adhesives (PSAs) have applications in the fields of packaging, joining, wound care, and personal care. Depending on the application of the PSA, different performance tests are carried out when new products are developed or the quality of the existing products is checked. Tack is the property of an adhesive that enables it to form instant bond on the surface under light pressure. The tack of a PSA strongly depends on the way the bond is created. Parameters such as the bonded area, contact time and the nature of tack materials all affect the tack force measured. In the development of any PSA, it is desirable to correlate the performance related properties such as tack and peel strength to the rheological behaviour. Finding these correlations would make it possible to evaluate the performance of a PSA using its rheological characteristics. In this investigation we have studied the influence of rheological behaviour of three different PSAs on their tackiness. The three different PSAs used in this study are a low molecular weight rosin ester, high molecular weight rosin ester, and dicyclopentadiene. Various rheological properties such as viscosity, phase angle, and elastic and viscous moduli are measured versus the frequency and temperature. Also the tack properties at various removal speeds and temperatures are evaluated. Analysis of the results indicates different performances of the three PSAs which could be related to their rheological properties, especially the phase angle, at different frequencies and temperatures. The PSA with high molecular weight rosin ester is more sensitive to temperature changes and showed drastic changes in tackiness from high temperature to low temperature. On the other hand, rosin ester with low molecular weight is less sensitive to temperature changes. © 2010 VSP.
Resumo:
An experimental study on the adsorption of phosphate onto cost effective fine dolomite powder is presented. The effect of solution pH, solution ionic strength and adsorption isotherm were examined. The adsorption of phosphate was pH dependent and phosphate adsorption favoured acidic conditions. The adsorption was significantly influenced by solution ionic strength indicating outer-sphere complexation reactions. The experimental data further indicated that the removal of phosphate increased with increase in the ionic strength of solution. The experimental data were modelled with different isotherms: Langmuir, Freundlich and Redlich–Peterson isotherms. It was found that the Redlich–Peterson isotherm depicted the equilibrium data most accurately. The overall kinetic data fitted very well the pseudo-first-order rate model.
Resumo:
Patients in perioperative healthcare settings are at risk of acquiring or developing infections because of the performance of invasive procedures. Serious life threatening infections can arise when micro-organisms are transmitted onto susceptible sites, such as: surgical wounds or intravascular cannulation sites. Infection control practices help to protect patients and healthcare providers by reducing and/or eliminating sources of infection.
Resumo:
Purpose
– Traditionally, most studies focus on institutionalized management-driven actors to understand technology management innovation. The purpose of this paper is to argue that there is a need for research to study the nature and role of dissident non-institutionalized actors’ (i.e. outsourced web designers and rapid application software developers). The authors propose that through online social knowledge sharing, non-institutionalized actors’ solution-finding tensions enable technology management innovation.
Design/methodology/approach
– A synthesis of the literature and an analysis of the data (21 interviews) provided insights in three areas of solution-finding tensions enabling management innovation. The authors frame the analysis on the peripherally deviant work and the nature of the ways that dissident non-institutionalized actors deviate from their clients (understood as the firm) original contracted objectives.
Findings
– The findings provide insights into the productive role of solution-finding tensions in enabling opportunities for management service innovation. Furthermore, deviant practices that leverage non-institutionalized actors’ online social knowledge to fulfill customers’ requirements are not interpreted negatively, but as a positive willingness to proactively explore alternative paths.
Research limitations/implications
– The findings demonstrate the importance of dissident non-institutionalized actors in technology management innovation. However, this work is based on a single country (USA) and additional research is needed to validate and generalize the findings in other cultural and institutional settings.
Originality/value
– This paper provides new insights into the perceptions of dissident non-institutionalized actors in the practice of IT managerial decision making. The work departs from, but also extends, the previous literature, demonstrating that peripherally deviant work in solution-finding practice creates tensions, enabling management innovation between IT providers and users.
Resumo:
The scale of BT's operations necessitates the use of very large scale computing systems, and the storage and management of large volumes of data. Customer product portfolios are an important form of data which can be difficult to store in a space efficient way. The difficulties arise from the inherently structured form of product portfolios, and the fact that they change over time as customers add or remove products. This paper introduces a new data-modelling abstraction called the List_Tree. It has been designed specifically to support the efficient storage and manipulation of customer product portfolios, but may also prove useful in other applications with similar general requirements.
Resumo:
In this study, the stress-corrosion cracking (SCC) behaviour of laser-welded NiTi wires before and after post-weld heat-treatment (PWHT) was investigated. The samples were subjected to slow strain rate testing (SSRT) under tensile loading in Hanks’ solution at 37.5 °C (or 310.5 K) at a constant anodic potential (200 mVSCE). The current density of the samples during the SSRT was captured by a potentiostat, and used as an indicator to determine the susceptibility to SCC. Fractography was analyzed using scanning-electron microscopy (SEM). The experimental results showed that the laser-welded sample after PWHT was immune to the SCC as evidenced by the stable current density throughout the SSRT. This is attributed to the precipitation of fine and coherent nano-sized Ni4Ti3 precipitates in the welded regions (weld zone, WZ and heat-affected zone, HAZ) after PWHT, resulting in (i) enrichment of TiO2 content in the passive film and (ii) higher resistance against the local plastic deformation in the welded regions.
Resumo:
A revised water model intended for use in condensed phase simulations in the framework of the self consistent polarizable ion tight binding theory is constructed. The model is applied to water monomer, dimer, hexamers, ice, and liquid, where it demonstrates good agreement with theoretical results obtained by more accurate methods, such as DFT and CCSD(T), and with experiment. In particular, the temperature dependence of the self diffusion coefficient in liquid water predicted by the model, closely reproduces experimental curves in the temperature interval between 230 K and 350 K. In addition, and in contrast to standard DFT, the model properly orders the relative densities of liquid water and ice. A notable, but inevitable, shortcoming of the model is underestimation of the static dielectric constant by a factor of two. We demonstrate that the description of inter and intramolecular forces embodied in the tight binding approximation in quantum mechanics leads to a number of valuable insights which can be missing from ab initio quantum chemistry and classical force fields. These include a discussion of the origin of the enhanced molecular electric dipole moment in the condensed phases, and a detailed explanation for the increase of coordination number in liquid water as a function of temperature and compared with ice-leading to insights into the anomalous expansion on freezing. The theory holds out the prospect of an understanding of the currently unexplained density maximum of water near the freezing point.
Resumo:
We demonstrate a model for stoichiometric and reduced titanium dioxide intended for use in molecular dynamics and other atomistic simulations and based in the polarizable ion tight binding theory. This extends the model introduced in two previous papers from molecular and liquid applications into the solid state, thus completing the task of providing a comprehensive and unified scheme for studying chemical reactions, particularly aimed at problems in catalysis and electrochemistry. As before, experimental results are given priority over theoretical ones in selecting targets for model fitting, for which we used crystal parameters and band gaps of titania bulk polymorphs, rutile and anatase. The model is applied to six low index titania surfaces, with and without oxygen vacancies and adsorbed water molecules, both in dissociated and non-dissociated states. Finally, we present the results of molecular dynamics simulation of an anatase cluster with a number of adsorbed water molecules and discuss the role of edge and corner atoms of the cluster. (C) 2014 AIP Publishing LLC.
Resumo:
As is now well established, a first order expansion of the Hohenberg-Kohn total energy density functional about a trial input density, namely, the Harris-Foulkes functional, can be used to rationalize a non self consistent tight binding model. If the expansion is taken to second order then the energy and electron density matrix need to be calculated self consistently and from this functional one can derive a charge self consistent tight binding theory. In this paper we have used this to describe a polarizable ion tight binding model which has the benefit of treating charge transfer in point multipoles. This admits a ready description of ionic polarizability and crystal field splitting. It is necessary in constructing such a model to find a number of parameters that mimic their more exact counterparts in the density functional theory. We describe in detail how this is done using a combination of intuition, exact analytical fitting, and a genetic optimization algorithm. Having obtained model parameters we show that this constitutes a transferable scheme that can be applied rather universally to small and medium sized organic molecules. We have shown that the model gives a good account of static structural and dynamic vibrational properties of a library of molecules, and finally we demonstrate the model's capability by showing a real time simulation of an enolization reaction in aqueous solution. In two subsequent papers, we show that the model is a great deal more general in that it will describe solvents and solid substrates and that therefore we have created a self consistent quantum mechanical scheme that may be applied to simulations in heterogeneous catalysis.
Resumo:
Neutron diffraction has been used to investigate the liquid structure of a 1:2 solution of phenol in the ionic liquid N-methylpyridinium bis{(trifluoromethyl)sulfonyl}imide at 60 ◦C, using the empirical potential structure refinement (EPSR) process to model the data obtained from the SANDALS diffractometer at ISIS. Addition of phenol results in suppression of the melting point of the pyridinium salt and formation of a room temperature solution with aromatic phenol–cation and phenol-OH to anion hydrogen-bonding interactions.
Resumo:
A simple derivatization methodology is shown to extend the application of surface-enhanced Raman spectroscopy (SERS) to the detection of trace concentration of contaminants in liquid form. Normally in SERS the target analyte species is already present in the molecular form in which it is to be detected and is extracted from solution to occupy sites of enhanced electromagnetic field on the substrate by means of chemisorption or drop-casting and subsequent evaporation of the solvent. However, these methods are very ineffective for the detection of low concentrations of contaminant in liquid form because the target (ionic) species (a) exhibits extremely low occupancy of enhancing surface sites in the bulk liquid environment and (b) coevaporates with the solvent. In this study, the target analyte species (acid) is detected via its solid derivative (salt) offering very significant enhancement of the SERS signal because of preferential deposition of the salt at the enhancing surface but without loss of chemical discrimination. The detection of nitric acid and sulfuric acid is demonstrated down to 100 ppb via reaction with ammonium hydroxide to produce the corresponding ammonium salt. This yields an improvement of ∼4 orders of magnitude in the low-concentration detection limit compared with liquid phase detection.