994 resultados para soil recovery
Resumo:
Portland cement is the most commonly and widely used binder in ground improvement soil stabilisation applications. However, many changes are now affecting the selection and application of stabilisation additives. These include the significant environmental impacts of Portland cement, increased use of industrial by-products and their variability, increased range of application of binders and the development of alternative cements and novel additives with enhanced environmental and technical performance. This paper presents results from a number of research projects on the application of a number of Portland cement-blended binders, which offer sustainability advantages over Portland cement alone, in soil stabilisation. The blend materials included ground granulated blastfurnace slag, pulverised fuel ash, cement kiln dust, zeolite and reactive magnesia and stabilised soils, ranging from sand and gravel to clay, and were assessed based on their mechanical performance and durability. The results are presented in terms of strength and durability enhancements offered by those blended binders.
Resumo:
Effect of water depth on recovery rate, growth performance and fish yield of GIFT in the rice-fish production systems was studies in experimental plots of 123 m2 with a pond refuge of I meter deep which covered 10% of the total land area. Mortality rate of fish was very low ranging from 0.81-1.63%. However, at harvest, recovery rate ranged from 76.69-82.93% with the highest recovery at 11-15 em of water depth. Significantly the highest absolute growth (99.97) and specific growth rate (2.42%) were found at 21-25 cm water depth. The same treatment also produced significantly higher fish yield (909.76 kg/ha) although statistically similar to the fish yield (862.60 kg/ha) obtained at ll-15 em of water depth. Results also suggested that higher water depth can produce bigger fish but no significant effects of water depth was found on fish yield in the treatments 11-15 cm and 21-25 cm water depths of this experiment.
Resumo:
A Gram-negative, non-motile, rod-shaped bacterial strain, designated CW-E 2(T), was isolated from a polluted soil sample collected from Jiangsu Province, China. A taxonomic study of the isolate, including phylogenetic analysis based on 16S rRNA gene seque
Resumo:
A Gram-negative, non-motile, rod-shaped bacterium, designated strain AKS 1 T, was isolated from a desert soil sample collected from Alkesu, Xin.lang Province, China. A taxonomic study, including phylogenetic analysis based on 16S rRNA gene sequences and p
Resumo:
A Gram-positive bacterium, designated strain CW 7(T), was isolated from forest soil in Anhui Province, south-east China. Cells were strictly aerobic, motile with peritrichous flagella and rod-shaped. The strain grew optimally at 30-37 degrees C and pH 7.0-8.0. The major fatty acids of strain CW 7(T) were anteiso-C-15:0, iso-C-15:0 and anteiso-C-17:0. The predominant menaquinone was MK-7. The cell-wall peptidoglycan contained meso-diaminopimelic acid. The G + C content of the genomic DNA was 42.3 mol%. Phylogenetic analysis indicated that strain CW 7(T) belonged to a monophyletic cluster within the genus Bacillus and showed 16S rRNA gene sequence similarities of less than 96.5% to recognized species of the genus Bacillus. The results of the polyphasic taxonomic study, including phenotypic, chemotaxonomic and phylogenetic analyses, showed that strain CW 7(T) represents a novel species of the genus Bacillus, for which the name Bacillus pallidus sp. nov. is proposed. The type strain is CW 7(T) (=KCTC 13200(T)=CCTCC AB 207188(T)=LMG 24451(T)).
Resumo:
In this paper an Active Voltage Control (AVC) technique is presented, for series connection of insulated-gate-bipolar-transistors (IGBT) and control of diode recovery. The AVC technique can control the switching trajectory of an IGBT according to a pre-set reference signal. In series connections, every series connected IGBT follows the reference and so that the dynamic voltage sharing is achieved. Another key advantage for AVC is that by changing the reference signal at turn-on, the diode recovery can be optimised. © 2010 IEEE.
Resumo:
Piles passing through sloping liquefiable deposits are prone to lateral loading if these deposits liquefy and flow during earthquakes. These lateral loads caused by the relative soil-pile movement will induce bending in the piles and may result in failure of the piles or excessive pile-head displacement. Whilst the weak nature of the flowing liquefied soil would suggest that only small loads would be exerted on the piles, it is known from case histories that piles do fail owing to the influence of laterally spreading soils. It will be shown, based on dynamic centrifuge test data, that dilatant behaviour of soil close to the pile is the major cause of these considerable transient lateral loads which are transferred to the pile. This paper reports the results of geotechnical centrifuge tests in which models of gently sloping liquefiable sand with pile foundations passing through them were subjected to earthquake excitation. The soil close to the pile was instrumented with pore-pressure transducers and contact stress cells in order to monitor the interaction between soil and pile and to track the soil stress state both upslope and downslope of the pile. The presence of instrumentation measuring pore-pressure and lateral stress close to the pile in the research described in this paper gives the opportunity to better study the soil stress state close to the pile and to compare the loads measured as being applied to the piles by the laterally spreading soils with those suggested by the JRA design code. This test data shows that lateral stresses much greater than one might expect from calculations based on the residual strength of liquefied soil may be applied to piles in flowing liquefied slopes owing to the dilative behaviour of the liquefied soil. It is shown at least for the particular geometry studied that the current JRA design code can be un-conservative by a factor of three for these dilation-affected transient lateral loads.
Resumo:
Research has begun on Microbial Carbonate Precipitation (MCP), which shows promise as a soil improvement method because of its low carbon dioxide emission compared to cement stabilized agents. MCP produces calcium carbonate from carbonates and calcium in soil voids through ureolysis by "Bacillus Pasteurii". This study focuses on how the amount of calcium carbonate precipitation is affected by the injection conditions of the microorganism and nutrient salt, such as the number of injections and the soil type. Experiments were conducted to simulate soil improvement by bio-grouting soil in a syringe. The results indicate that the amount of precipitation is affected by injection conditions and soil type, suggesting that, in order for soil improvement by MCP to be effective, it is necessary to set injection conditions that are in accordance with the soil conditions. © 2011 ASCE.
Resumo:
This paper introduces current work in collating data from different projects using soil mix technology and establishing trends using artificial neural networks (ANNs). Variation in unconfined compressive strength as a function of selected soil mix variables (e.g., initial soil water content and binder dosage) is observed through the data compiled from completed and on-going soil mixing projects around the world. The potential and feasibility of ANNs in developing predictive models, which take into account a large number of variables, is discussed. The main objective of the work is the management and effective utilization of salient variables and the development of predictive models useful for soil mix technology design. Based on the observed success in the predictions made, this paper suggests that neural network analysis for the prediction of properties of soil mix systems is feasible. © ASCE 2011.
Resumo:
The past 15 years have seen increasing applications of soil mix technology in land remediation, mainly in stabilisation/solidification treatments and the construction of low-permeability cut-off walls and permeable reactive barriers; clear evidence of the versatility of the technology and its wide-ranging applications. This paper provides an overview of some of the recent innovations of soil mix technology in land remediation covering equipment developments and applications, including systems for rectangular panels and trenching systems, treatments, such as chemical oxidation, and additives, such as modified clays, zeolites and reactive magnesia. The paper also provides case studies for such innovations. The paper concludes with an overview of an on-going research and development project SMiRT (Soil Mix Remediation Technology) which will involve field trials on a contaminated site and will employ some of the innovations discussed in the paper. The range of significant advantages that soil mix technology now offers compared to other remediation techniques is likely to place this remediation method at the forefront of remedial options for future brownfield projects.
Resumo:
A Gram-negative, rod-shaped, non-motile, non-spore-forming bacterium, designated strain HR2(T) was isolated from a soil sample from the Talklimaken Desert in Xinjiang Province, China. Strain HR2(T) grew optimally at pH 7.0-8.0 and 30-37 degrees C in the presence of 0-1% (w/v) NaCl. An analysis of 16S rRNA gene sequences revealed that strain HR2(T) fell within the radiation of the genus Pseudomonas, the highest level of similarity being found with respect to Pseudomonas luteola IAM 13000(T) (97.5%); the levels of sequence similarity with respect to other recognized Pseudomonas species were < 96.4%. DNA-DNA hybridization showed that the genetic relatedness between strain HR2(T) and P. luteola IAM 13000(T) was 53.2%. The G + C content of the genomic DNA of strain HR2(T) was 55.2 mol%. The major fatty acids were 18: 1, summed feature 3 and 16:0. The hydroxylated fatty acids 10:0 3-OH, 12:0 3-OH and 12:0 2-OH were also present. The data obtained in this polyphasic study indicated that this isolate represents a novel species of the genus Pseudomonas, for which the name Pseudomonas duriflava sp. nov. is proposed, The type strain is HR2(T) (=KCTC 221129(T) =CGMCC 1.6858(T)).
Resumo:
The taxonomic position of a novel Gram-negative strain, designated Sy1(T), isolated from a farm-soil sample obtained from Jiangsu Province, PR China, was characterized by using a polyphasic approach. The cells were non-motile, non-spore-forming rods. The organism grew optimally at 30-37 degrees C and at pH 6.0-8.0. Based on 16S rRNA gene sequence analysis, strain Sy1(T) is a member of the genus Sphingobacterium; Sphingobacterium multivorum JCM 21156(T) was the nearest relative (98.5% sequence similarity). The predominant fatty acids of strain Sy1T were isoC15:0 (32.90/o), C16:0 (10.9%) and summed feature 3 (iso-C-15:0 2-OH and/or C-16:1 omega 7c; 24.1%). The DNA G + C content was 38.5 mol%. The low level of DNA-DNA relatedness (2.2 %) to S. multivorum JCM 21156 T in combination with differential morphological and biochemical properties demonstrated that strain SY1(T) (=KCTC 22131(T)= CGMCC 1.6855(T)) should be classified as representing a novel species of the genus Sphingobacterium for which the name Sphingobacterium siyangense sp. nov. is proposed.
Resumo:
A novel strain, D3(T), isolated from a field-soil sample obtained from Anhui Province, PR China, was characterized taxonomically by using a polyphasic approach. The cells were Gram-negative, yellow-pigmented rods devoid of flagella, but showing gliding motility. The organism was able to grow at 5-37 degrees C and at pH 4.0-10.0. A comparative 16S rRNA gene sequence analysis indicated that strain D3(T) is a member of the genus Flavobacterium, sharing highest sequence similarity with the type strain of Flavobacterium defluvii (96.7 %). The major isoprenoid quinone was MK-6 and the predominant fatty acids were iso-C-15:0, summed feature 3 (C-16:1 omega 7c and/or iso-C-15:0 2-OH) and C-16:0. The DNA G + C content was 31.4 mol%. On the basis of phylogenetic and phenotypic data, strain D3(T) represents a novel species within the genus Flavobacterium, for which the name Flavobacterium anhuiense sp. nov. is proposed. The type strain is D3(T) (=KCTC 22128(T)= CGIVICC 1.6859(T)).
Resumo:
A novel Gram-positive, motile, rod-shaped bacterium isolated from a saline soil in China was characterized by a polyphasic taxonomic approach. The strain, designated YC1(T), was halotolerant [tolerating up to 15 % (w/v) NaCl] and alkaliphilic (growing at
Resumo:
A taxonomic study was performed on strain HR1(T), which was isolated from a desert soil sample collected from Xinjiang Province (China). Cells were aerobic, Gram-positive-staining, pink-pigmented, sporulating rods with a single lateral flagellum. The orga