999 resultados para slope lines


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Submarine slope failures of various types and sizes are common along the tectonic and seismically active Ligurian margin, northwestern Mediterranean Sea, primarily because of seismicity up to ~M6, rapid sediment deposition in the Var fluvial system, and steepness of the continental slope (average 11°). We present geophysical, sedimentological and geotechnical results of two distinct slides in water depth >1,500 m: one located on the flank of the Upper Var Valley called Western Slide (WS), another located at the base of continental slope called Eastern Slide (ES). WS is a superficial slide characterized by a slope angle of ~4.6° and shallow scar (~30 m) whereas ES is a deep-seated slide with a lower slope angle (~3°) and deep scar (~100 m). Both areas mainly comprise clayey silt with intermediate plasticity, low water content (30-75 %) and underconsolidation to strong overconsolidation. Upslope undeformed sediments have low undrained shear strength (0-20 kPa) increasing gradually with depth, whereas an abrupt increase in strength up to 200 kPa occurs at a depth of ~3.6 m in the headwall of WS and ~1.0 m in the headwall of ES. These boundaries are interpreted as earlier failure planes that have been covered by hemipelagite or talus from upslope after landslide emplacement. Infinite slope stability analyses indicate both sites are stable under static conditions; however, slope failure may occur in undrained earthquake condition. Peak earthquake acceleration from 0.09 g on WS and 0.12 g on ES, i.e. M5-5.3 earthquakes on the spot, would be required to induce slope instability. Different failure styles include rapid sedimentation on steep canyon flanks with undercutting causing superficial slides in the west and an earthquake on the adjacent Marcel fault to trigger a deep-seated slide in the east.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Antarctic continental slope spans the depths from the shelf break (usually between 500 and 1000 m) to ~3000 m, is very steep, overlain by 'warm' (2-2.5 °C) Circumpolar Deep Water (CDW), and life there is poorly studied. This study investigates whether life on Antarctica's continental slope is essentially an extension of the shelf or the abyssal fauna, a transition zone between these or clearly distinct in its own right. Using data from several cruises to the Weddell Sea and Scotia Sea, including the ANDEEP (ANtarctic benthic DEEP-sea biodiversity, colonisation history and recent community patterns) I-III, BIOPEARL (Biodiversity, Phylogeny, Evolution and Adaptive Radiation of Life in Antarctica) 1 and EASIZ (Ecology of the Antarctic Sea Ice Zone) II cruises as well as current databases (SOMBASE, SCAR-MarBIN), four different taxa were selected (i.e. cheilostome bryozoans, isopod and ostracod crustaceans and echinoid echinoderms) and two areas, the Weddell Sea and the Scotia Sea, to examine faunal composition, richness and affinities. The answer has important ramifications to the link between physical oceanography and ecology, and the potential of the slope to act as a refuge and resupply zone to the shelf during glaciations. Benthic samples were collected using Agassiz trawl, epibenthic sledge and Rauschert sled. By bathymetric definition, these data suggest that despite eurybathy in some of the groups examined and apparent similarity of physical conditions in the Antarctic, the shelf, slope and abyssal faunas were clearly separated in the Weddell Sea. However, no such separation of faunas was apparent in the Scotia Sea (except in echinoids). Using a geomorphological definition of the slope, shelf-slope-abyss similarity only changed significantly in the bryozoans. Our results did not support the presence of a homogenous and unique Antarctic slope fauna despite a high number of species being restricted to the slope. However, it remains the case that there may be a unique Antarctic slope fauna, but the paucity of our samples could not demonstrate this in the Scotia Sea. It is very likely that various ecological and evolutionary factors (such as topography, water-mass and sediment characteristics, input of particulate organic carbon (POC) and glaciological history) drive slope distinctness. Isopods showed greatest species richness at slope depths, whereas bryozoans and ostracods were more speciose at shelf depths; however, significance varied across Weddell Sea and Scotia Sea and depending on bathymetric vs. geomorphological definitions. Whilst the slope may harbour some source populations for localised shelf recolonisation, the absence of many shelf species, genera and even families (in a poorly dispersing taxon) from the continental slope indicate that it was not a universal refuge for Antarctic shelf fauna.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During a field campaign in the Austral spring 2012 the sedimentary architecture of a periglacial flood plain at the northeastern coast of Potter Peninsula (Area 5) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 14 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In order to understand the driving forces for Pleistocene climate change more fully we need to compare the timing of climate events with their possible forcing. In contrast to the last interglacial (marine isotope stage (MIS) 5) the timing of the penultimate interglacial (MIS 7) is poorly constrained. This study constrains its timing and structure by precise U-Th dating of high-resolution delta18O records from aragonite-rich Bahamian slope sediments of ODP Leg 166 (Sites 1008 and 1009). The major glacial-interglacial cycles in delta18O are distinct within these cores and some MIS 7 substages can be identified. These sediments are well suited for U-Th dating because they have uranium concentrations of up to 12 ppm and very low initial 230Th contributions with most samples showing 230Th/232Th activity ratio of >75. U and Th concentrations and isotope ratios were measured by thermal ionisation mass spectrometry and multiple collector inductively coupled plasma mass spectrometry, with the latter providing dramatically better precision. Twenty-nine of the 41 samples measured have a delta234U value close to modern seawater suggesting that they have experienced little diagenesis. Ages from 27 of the 41 samples were deemed reliable on the basis of both their U and their Th isotope ratios. Ages generally increase with depth, although we see a repeated section of stratigraphy in one core. Extrapolation of constant sedimentation rate through each substage suggests that the peak of MIS 7e lasted from ~237 to 228 ka and that 7c began at 215 ka. This timing is consistent with existing low precision radiometric dates from speleothem deposits. The beginning of both these substages appears to be slightly later than in orbitally tuned timescales. The end of MIS 7 is complex, but also appears to be somewhat later than is suggested by orbitally tuned timescales, although this event is not particularly well defined in these cores.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three sediment cores from the continental shelf and slope off NW Africa (Banc d'Arguin; 52 m, 665 m and 973 m water depth) have been investigated by means of a coarse fraction analysis. The two shallower cores have been deposited during less than 10,000 years, the deeper one during the last 36,000 years. The Holocene sedimentation ( 4000 years) in the deeper part of core 79 the edge of the Banc d'Arguin is strongly influenced by reworking of Late Glacial dune sands and biogenic particles from shallower ware (<40 m), as well as eroding current influence. A decrease in grain size of silicate material and a decrease in lateral supply, correlated to a doubling of accumulation rates in the upper part of the core, indicates a more autochthonous sedimentation with less sorting influence in the youngest Holocene. The depth of provenance of the allochttonous material can be assumed in 100-300 m water depth as indicated by various biogenous particles. Small amounts of shallow water particles in the autochthonous layers indicate a supplay from shallow water, which probably occured b ythe mechanism of "particle by particle supply". None of the three cores indicates upwelling influence, although occanographers found intense upwelling in the area of the Banc d'Arguin. The Holocene climate in that area probably has been arid, small variations in terrigenous matter composition and grain size in the Early Holocene might be due to decreased wind strength or to an increase in rain fall. The Peak Glacial section (14,000-22,000 y. B.P.) of the deepest core 88 indicates a very much intensified eolian silt supply and an additional bottom supply of quartz sand In the interval 22,000-36,000 y. B.P. wind strength decreased, but probably no increase in humidity occurred. So this area in about 19° 40' N had an arid climate in the Late Holocene and in the Peak Glacial. The fragmentation of planktonic foraminifers and the abundance of aragonitic tests of pteropods in core 88 indicate an Early Holocene (8330 y. B.P.) preservation spike. Two minima in fragmentation correlated to maxima in pteropod content at about 15,700 and 21,000 y. B.P. are correlated to maxima in shallow water supply and thus do not reflect preservation conditions, but only lateral supply from the carbonate dissolution minimum zone in about 300 m water depth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Two cores, one from the Beaufort Sea Slope at 1000 m water depth (core 750) and one from the Amundsen Gulf at 426 m (core 124), were collected to help determine paleo-ice cover in the Holocene and late glacial of this area. Site 750 is particularly sensitive to changes in paleo-ice cover because it rests beneath the present ice margin of the permanent Arctic ice pack. Core 124 was sampled just in front of the former glacier that moved out into the Amundsen Gulf and started to recede about 13 ka B.P. Both cores have a strong occurrence of calcareous foraminifera in the upper few centimeters, but these disappear throughout most of the Holocene, suggesting more open water in that time period than present. In the sediments representing the end of the last glacial period (dated at ~11,500-14,000 calibrated years B.P. (cal B.P.)) a calcareous fauna with an abundant planktic foraminiferal fauna suggests a return to almost permanent ice cover, much like the central Arctic today. Together with the foraminifera there was also abundant ice-rafted debris (IRD) in both cores between 12,000 cal B.P. and ~14,000 cal B.P., but those units are of different ages between cores, suggesting different events. The IRD in both cores appears to have the same magnetic and chemical signals, but their origins cannot be determined exactly until clay mineralogy is completed. There is abundant organic debris in both cores below the IRD units: the organics in core 750 are very diffuse and not visually identifiable, but the organic material in core 124 is clearly identifiable with terrestrial root fragments; these are 14C dated at over 37,000 years B.P. This is a marine unit as it also has glacial front foraminifera in the sediment with the organic debris that must have been originating from subglacial streams. The seismic and multibeam data both indicate glaciers did not cross the core 124 site.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On "Meteor" cruise 30 (1973) 22 piston-cores were collected off Sierra Leone from water-depths between about 5000 m (Sierra Leone Basin) and 500 m (upper continental slope) with the objective to study the sediment composition and age as well as processes of sedimentation on the continental slope in a tropical humid region. Granulometric analysis and determinations of the carbonate contents of the sediment samples were carried out, as well as qualitative and quantitative analysis of the components of the grain size fractions > 63 µm and of the planktonic and benthonic foraminifera > 160 µm. Presently, the cold Canary Current influences the composition of the planktonic foraminifera within the northwestern area of investigation (profile A), whereas the planktonic fauna of the eastern area (profile C) seems to be truly tropical. In all Quaternary sediments from the continental slope off Sierra Leone, species of Globorotalia are less abundant than in truly pelagic sediments. For that reason, the zonation of the Pleistocene sediments based on the presence or absence of Globorotalia cultrata does not always agree with the climatic changes reflected in the sediments. Concerning past climates better results can be obtained by using the changes in percentage abundances of Globigerina sp. sp. and Globigerinoides sp. sp. as indicators for cool and warm temperatures. The Tertiary sediments contain a pelagic foraminiferal assemblage. In the Holocene sediments the benthonic foraminifera do not only serve as good paleodepth indicators, but their communities are also restricted to defined water masses, which change their positions in accordance with climatic changes. Thus, Cassidulina carinata in the area of investigation is an excellent indicator for sediments deposited during times, which were cooler than today; this is true for all cores from the continental slope off Sierra Leone independent of water-depth although this species presently abounds at water-depths around 600 m. The cores from the continental rise and from the Sierra Leone Basin (M30-261, M30-146, M30-147) were deposited below the calcium carbonate compensation depth. Only small sections of the cores consist of the original carbonate-free sediments, whereas the main part of the sediment column is redeposited material, rich in foraminifera, which normally live on the upper continental slope, or even on the shelf. From these cores only M30-261 can be subdivided into biostratigraphic zones ranging from zone V to zone Y. In all cores from the middle and upper continental slope of the eastern area of investigation (profile C; KL 230, 209-204) and in cores KL 183 and KL 184 from the northwestern area (profile A) we observed an undisturbed succession of sediments from the biostratigraphic zones X (partly), Y and Z. All cores from the central area (M30-181, M30-182, M30-262 to 264) and M30-187 from the upper slope of profile A show variable hiatuses in the sedimentary record. Locally, high velocity bottom currents were probably responsible for erosion, nondeposition or minimal sedimentation rates. These currents might have been initiated partly by the somewhat exposed position of this part of the continental slope, where the shelf edge bends from a northwest towards an eastern direction, and partly by very young tectonic movements. Fracture zones with vertically displaced fault blocs are frequent at Sierra Leone continental margin. According to seismic measurements by McMaster et al. (1975) the sites of the central area are located on an uplifted fault bloc explaining the reduced sediment rates or erosion. Unlike the central area, the eastern area (profile C) is situated on a downfaulted bloc with high sediment rates. The sediments from the cores of profile B as well as the turbiditic deep-sea sediments were deposited under a higher flow regime; therefore they are coarser than the extremely fine-grained sediments of the cores from profile C. Since the sand fraction (> 63 µm) is mainly composed of foraminifera, besides pteropods and light-colored fecal pellets, the carbonate content increases with the increasing percentage of the coarse grain fraction. Higher concentrations of quartz were only observed in core sections with considerable carbonate dissolution (mainly in the X-Zone), and, in general, in all sediments from the eastern area with higher terrigenous input including larger concentration of mica. Especially during times transitional between glacials and interglacials (or interstadials) the bottom currents were intensified. The percentages of coarse fraction and carbonate increase with increasing current velocities. Calcium carbonate dissolution becomes important in water depths > 3500 m. During cooler times the lysokline is depressed. Light-colored fecal pellets were redeposited from Late Neogene sediments (M30-187, M30-181). In the area of investigation they occur in the Holocene and mainly the Pleistocene sediments of the cores from the northwestern and central area because only here Tertiary sediments have been eroded at the uppermost continental slope. In the central area there are at least two periods of non-sedimentation and/or erosion which can be confined as being (1) not older than middle Pliocene and not younger than zone V and (2) younger than zone W. The local character of the erosion is documented by the fact that a complete Late Quaternary section is present in the cores of the northwestern and eastern area, each within less than 100 km from incomplete cores from the central area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Controls of sediment dynamics at the Galician continental slope (NW Iberia) during the past 30 ka were reconstructed from three new gravity cores (GeoB11035-1, 130206-1, 13071-1) based on sedimentological (e.g. sortable silt, IRD), micropalaeontological (e.g. coccoliths), geochemical (AMS 14C, XRF) and geophysical (e.g. magnetic susceptibility) diagnostics. The data are consistent with existing regional knowledge that, during marine isotope stages 3-1, variations in detrital input, marine productivity and sea level were the essential drivers of sediment availability on the slope, whereas deep-water current velocities controlled sediment deposition: (1) the period prior to 30 cal ka BP is characterized by minor but systematic variations in various proxies which can be associated with D-O cycles; (2) between 30 and 18 cal ka BP, high detrital input and steady slope-parallel currents led to constant sedimentation; (3) from the LGM until 10 cal ka BP, the shelf-transgressive sea-level rise increased the detrital particle flux; sedimentation was influenced by significantly enhanced deep-water circulation during the Bølling/Allerød, and subsequent slowing during the Younger Dryas; (4) an abrupt and lasting change to hemipelagic sedimentation at ca. 10 cal ka BP was probably due to Holocene warming and decelerated transgression; (5) after 5 cal ka BP, additional input of detrital material to the slope is plausibly linked to the evolution of fine-grained depocentres on the Galician shelf, this being the first report of this close shelf-slope sedimentary linkage off NW Iberia. Furthermore, there is novel evidence of the nowadays strong outer shelf Iberian Poleward Current becoming established at about 15.5 cal ka BP. The data also demonstrate that small-scale morphologic features and local pathways of sediment export from the neighbouring shelf play an important role for sediment distribution on the NW Iberian slope, including a hitherto unknown sediment conduit off the Ría de Arousa. By implication, the impact of local morphology on along- and down-slope sediment dynamics is more complex than commonly considered, and deserves future attention.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

During a field campaign in the Austral spring 2012 the sedimentary architecture of a polar gravel-beach system at the southern coast of Potter Peninsula (Area 3) was revealed using ground-penetrating radar (GPR, Geophysical Survey Systems, Inc. SIR-3000). 31 profiles were collected using a mono-static 200 MHz antenna operated in common offset mode. Trace increment was set to 0.05 m. A differential global-positioning system (dGPS, Leica GS09) was used to obtain topographical information along the GPR lines. GPR data are provided in RADAN-Format, dGPS coordinates are provided in ascii format; projection is UTM (WGS 84, zone 21S).