986 resultados para simuliid vectors
Resumo:
Background: Adenovirus serotype 5 (Ad5) phase IIb vaccine trial (STEP) was prematurely stopped due to a lack of efficacy and two-fold higher incidence of HIV infection among Ad5 seropositive vaccine recipients. We have recently demonstrated that Ad5 immune complexes (Ad5 ICs)-mediated activation of the dendritic cell (DC)-T cell axis was associated with the enhancement of HIV infection in vitro. Although the direct role of Ad5 neutralizing antibodies (NAbs) in the increase of HIV susceptibility during the STEP trial is still under debate, vector-specific NAbs remain a major hurdle for vector-based gene therapies or vaccine strategies. To surmount this obstacle, vectors based on ''rare'' Ad serotypes including Ad6, Ad26, Ad36 and Ad41 were engineered.Methods: The present study aimed to determine whether Ad ICmediated DC maturation could be circumvented using these Advector candidates.Results: We found that all Ad vectors tested forming ICs with plasma containing serotype-specific NAbs had the capacity to 1) mature human DCs as monitored by the up-regulation of costimulatory molecules and the release of pro-inflammatory cytokines (TNF-a), via the stabilization of Ad capsid at endosomal but not lysosomal pH rendering Ad DNA/TLR9 interactions possible and 2) potentiate Ad-specific CD4 and CD8 T cell responses.Conclusion: In conclusion, despite a conserved DC maturation potential, the low prevalence of serotype-specific NAbs renders rare Ad vectors attractive for vaccine strategies.
Resumo:
A fast method for the identification of recombinant vaccinia viruses directly from individual plaques is described. Plaques are picked, resuspended in PBS-A and processed for PCR using two 'universal' primers. The amplified sequences are analyzed by agarose gel electrophoresis. This procedure allows discrimination between spontaneously arising TK-negative mutants, which do not carry the inserted gene, and the desired TK-negative recombinants resulting from insertional inactivation of the TK gene.
Resumo:
Résumé : Le centrosome contient une paire de centrioles entourée par du matériel péricentriolaire (PCM) et cet ensemble constitue le centre organisateur des microtubules de la majorité des cellules animales. Tout comme l'ADN, 1'unique centrosome présent au début du cycle cellulaire est dupliqué une et une seule fois pour former deux centrosomes qui vont orchestrer la mise en place du fuseau mitotique. La duplication du centrosome doit être soumise à une régulation précise car la présence d'un seul ou de plus de deux centrosomes peut entraîner la formation d'un fuseau mitotique aberrant, la mauvaise ségrégation des chromosomes et l'aneuploïdie. Bien que la duplication des centrioles soit un phénomène clé pour la duplication du centrosome lui-même, les mécanismes impliqués dans la formation des centrioles sont peu connus et constituent une importante question de biologie cellulaire. Dans cette thèse, nous nous sommes concentrés sur l'analyse de HsSAS-6. Nous avons trouvé que cette protéine est nécessaire pour la formation d'un centriole et qu'elle est localisée spécifiquement à la base des nouveaux centrioles formés. Les niveaux de HsSAS-6 oscillent pendant le cycle cellulaire : la protéine est absente en G1, commence à s'accumuler au niveau du centriole et dans le cytoplasme dès le début de la phase S de synthèse et disparaît abruptement pendant l'anaphase, où probablement APC/CCdlh1 la dirige vers une dégradation par le protéasome 26S. Il est important de noter que la surexpression de HsSAS-6 entraîne la formation de multiples centrioles au lieu d'un seul, ce qui indique que les niveaux de HsSAS-6 déterminent le nombre de centrioles formés. En plus de HsSAS-6, nous avons aussi étudié la lignée mutante sas-2 de C. elegans qui quelques fois assemble un fuseau multi-polaire dans l'embryon à une cellule. Nous avons montré que ce phénotype est la conséquence de la présence de multiples centrioles dans les cellules du sperme. Enfin, nous avons aussi préparé une palette de vecteurs compatibles avec le système Gateway pour permettre la génération rapide de lignées cellulaires humaines exprimant des protéines de manière inductible. De plus, nous avons commencé à développer une méthode pour évaluer la duplication des centrioles par le biais d'une plateforme de criblage d'une librairie de siRNA humains. Dans l'ensemble, notre travail a pu apporter une nouvelle compréhension du processus de duplication des centrioles et a contribué au développement de nouveaux outils de recherche de ce processus. Summary : Centrosomes contain a pair of centrioles surrounded by pericentriolar material (PCM) and serve as the main microtubule organizing centers (MTOCs) of most animal cells. Just like the DNA, the single centrosome present early in the cell cycle duplicates once and only once to give rise to two centrosomes which will then direct assembly of a bipolar spindle. Centrosome duplication must be precisely regulated because the presence of either one or more than two centrosomes can lead to the assembly of an aberrant spindle, chromosome missegregation and aneuploidy. Although duplication of centrioles is key for that of the entire centrosome, the mechanisms underlying centriole formation are poorly understood and represent an important question in cell biology. In this thesis, we focused on the analysis of HsSAS-6. We found that this protein is required for centriole formation and that it is localized specifically at the base of newly forming centrioles. The levels of HsSAS-6 oscillate across the cell cycle. The protein is absent during G1, starts to accumulate at the centriole and in the cytoplasm at the onset of S phase and disappears abruptly during anaphase when it is targeted for 26S proteasome dependent degradation probably by the APC/CCdh1. Importantly, overexpression of HsSAS-6 leads to the formation of multiple centrioles instead of just one, indicating that levels of HsSAS-6 determine the number of centrioles at each cell cycle. Besides HsSAS-6 that is the main focus of this thesis, we have also investigated the C. elegans mutant strain sas-2, which sometimes assembles a multipolar spindle in the one cell stage embryo. We have shown that this phenotype derives from the presence of multiple centrioles in sperm cells. Moreover, we prepared a set of Gateway compatible vectors for fast generation of human cell lines with inducible protein expression. Finally, we started to develop an assay for centriole duplication that can be used in a high throughput setting for screening of human siRNA libraries. Taken together, our work brought novel insights into the process of centriole duplication and lead to the development of new tools for further investigation of this process.
Resumo:
Plants naturally synthesize a variety of polymers that have been used by mankind as a source of useful biomaterials. For example, cellulose, the main constituent of plant cell wall and the most abundant polymer on earth, has been used for several thousand years as a source of fibers for various fabrics. Similarly, rubber extracted from the bark of the tree Hevea brasiliensis, has been a major source of elastomers until the development of similar synthetic polymers. In the last century, the usefulness of plant polymers as biomaterials has been expanded through the chemical modification of the natural polymers. For example, a number of plastics have been made by substituting the hydroxyl groups present on the glucose moiety of cellulose with larger groups, such as nitrate or acetate, giving rise to materials such as cellulose acetate, a clear plastic used in consumer products such as toothbrush handles and combs. Similarly, starch has been used in the manufacture of plastics by either using it in blends with synthetic polymers or as the main constituent in biodegradable plastics. The advent of transformation and expres- sion of foreign genes in plants has created the possibility of expanding the usefulness of plants to include the synthesis of a range of biomolecules. In view of the capacity of certain crops to produce a large quantity of organic raw material at low cost, such as oils and starch, it is of interest to explore the possibility of using transgenic plants as efficient vectors for the synthesis of biopolymers. Such plant based biopolymers could replace, in part, the synthetic plastics and elastomers produced from petroleum, offering the advantage of renewability and sustainability. Furthermore, being natural pro- ducts, biopolymers are usually biodegradable and can thus contribute to alleviate problems associated with the management of plastic waste. In this article, the emphasis will be on the use of transgenic plants for the synthesis of two novel classes of industrially useful polymers, namely protein based polymers made from natural or artificial genes, and polyhydroxyalkanoates, a family of bacterial poly- esters having the properties of biodegradable plastics and elastomers.
Resumo:
This chapter describes the potential use of viral-mediated gene transfer in the central nervous system for the silencing of gene expression using RNA interference in the context of Huntington's disease (HD). Protocols provided here describe the design of small interfering RNAs, their encoding in lentiviral vectors (LVs) and viral production, as well as procedures for their stereotaxic injection in the rodent brain.
Resumo:
Background: HIV vaccine-candidates based on rare adenovirus serotypes such as Ad26 and Ad35 vectors, and poxvirus vectors are important components of future promising vaccine regimens that in the near future hopefully will move into a number of efficacy clinical trials in combination with protein vaccines. For these reasons, it is important to comprehensively characterize the vaccine-induced immune responses in different anatomical compartments and particularly at mucosal sites which represent the primary port of entry for HIV.Methods: In the present study, we have investigated the anatomic distribution in blood and gut mucosal tissues (rectum and ileum) of memory poxvirus-specific CD4 and CD8 T cells in subjects vaccinated with smallpox and compared with vector (NYVAC)-specific and HIV insert-specific T-cell responses induced by an experimental DNA-C/NYVAC-C vaccine regimen.Results: Smallpox-specific CD4 T-cell responses were present in the blood of 52% of subject studied, while Smallpox-specific CD8 T cells were rarely detected (12%). With one exception, Smallpoxspecific T cells were not measurable in gut tissues. Interestingly, NYVAC vector-specific and HIV-specific CD4 and CD8 T-cell responses were detected in almost 100% of the subjects immunized with DNA-C/NYVAC-C in blood and gut tissues. The large majority (83%) of NYVAC-specific CD4 T cells expressed a4b7 integrins and the HIV co-receptor CCR5.Conclusion: These results demonstrate that the experimental DNA-C/NYVAC-C HIV vaccine regimen induces the homing of potentially protective HIV-specific CD4 and CD8 T cells in the gut, the port of entry of HIV and one of the major sites for HIV spreading and depletion of CD4 T cells.
Resumo:
In ovarian follicles, cumulus cells provide the oocyte with small molecules that permit growth and control maturation. These nutrients reach the germinal cell through gap junction channels, which are present between the cumulus cells and the oocyte, and between the cumulus cells. In this study the involvement of intercellular communication mediated by gap junction channels on oocyte maturation of in vitro cultured bovine cumulus-oocyte complexes (COCs) was investigated. The stages of oocyte maturation were determined by Hoechst 33342 staining, which showed that 90% of COCs placed in the maturation medium for 24 h progress to the metaphase II stage. Bovine COC gap junction communication was disrupted initially using n-alkanols, which inhibit any passage through gap junctions. In the presence of 1-heptanol (3 mmol l(-1)) or octanol (3.0 mmol l(-1) and 0.3 mmol l(-1)), only 29% of the COCs reached metaphase II. Removal of the uncoupling agent was associated with restoration of oocyte maturation, indicating that treatment with n-alkanols was neither cytotoxic nor irreversible. Concentrations of connexin 43 (Cx43), the major gap junction protein expressed in the COCs, were decreased specifically using a recombinant adenovirus expressing the antisense Cx43 cDNA (Ad-asCx43). The efficacy of adenoviral infection was > 95% in cumulus cells evaluated after infection with recombinant adenoviruses expressing the green fluorescence protein. RT-PCR performed on total RNA isolated from Ad-asCx43-infected COCs showed that the rat Cx43 cDNA was transcribed. Western blot analysis revealed a three-fold decrease in Cx43 expression in COCs expressing the antisense RNA for Cx43. Injection of cumulus cells with Lucifer yellow demonstrated further that the resulting lower amount of Cx43 in infected COCs is associated with a two-fold decrease in the extent of coupling between cumulus cells. In addition, oocyte maturation was decreased by 50% in the infected COC cultures. These results indicate that Cx43-mediated communication between cumulus cells plays a crucial role in maturation of bovine oocytes.
Resumo:
BACKGROUND: Up to now, the different uptake pathways and the subsequent intracellular trafficking of plasmid DNA have been largely explored. By contrast, the mode of internalization and the intracellular routing of an exogenous mRNA in transfected cells are poorly investigated and remain to be elucidated. The bioavailability of internalized mRNA depends on its intracellular routing and its potential accumulation in dynamic sorting sites for storage: stress granules and processing bodies. This question is of particular significance when a secure transposon-based system able to integrate a therapeutic transgene into the genome is used. Transposon vectors usually require two components: a plasmid DNA, carrying the gene of interest, and a source of transposase allowing the integration of the transgene. The principal drawback is the lasting presence of the transposase, which could remobilize the transgene once it has been inserted. Our study focused on the pharmacokinetics of the transposition process mediated by the piggyBac transposase mRNA transfection. Exogenous mRNA internalization and trafficking were investigated towards a better apprehension and fine control of the piggyBac transposase bioavailability. RESULTS: The mRNA prototype designed in this study provides a very narrow expression window of transposase, which allows high efficiency transposition with no cytotoxicity. Our data reveal that exogenous transposase mRNA enters cells by clathrin and caveolae-mediated endocytosis, before finishing in late endosomes 3 h after transfection. At this point, the mRNA is dissociated from its carrier and localized in stress granules, but not in cytoplasmic processing bodies. Some weaker signals have been observed in stress granules at 18 h and 48 h without causing prolonged production of the transposase. So, we designed an mRNA that is efficiently translated with a peak of transposase production 18 h post-transfection without additional release of the molecule. This confines the integration of the transgene in a very small time window. CONCLUSION: Our results shed light on processes of exogenous mRNA trafficking, which are crucial to estimate the mRNA bioavailability, and increase the biosafety of transgene integration mediated by transposition. This approach provides a new way for limiting the transgene copy in the genome and their remobilization by mRNA engineering and trafficking.
Resumo:
Estudi realitzat a partir d’una estada al Institut de Génétique Moléculaire de Montpellier, França, entre 2010 i 2012. En aquest projecte s’ha avaluat les avantatges dels vectors adenovirals canins tipus 2 (CAV2) com a vectors de transferència gènica al sistema nerviós central (SNC) en un model primat no-humà i en un model caní del síndrome de Sly (mucopolisacaridosis tipus 7, MPS VII), malaltia monogènica que cursa amb neurodegeneració. En una primera part del projecte s’ha avaluat la biodistribució, l’eficàcia i la durada de l’expressió del transgen en un model primat no humà, (Microcebus murinus). Com ha vector s’ha utilitzat un CAV2 de primera generació que expressa la proteïna verda fluorescent (CAVGFP). Els resultats aportats en aquesta memòria demostren que en primats no humans, com en d’altres espècies testades anteriorment per l’equip de l’EJ Kremer, la injecció intracerebral de CAV2 resulta en una extensa transducció del SNC, siguent les neurones i els precursors neuronals les cèl•lules preferencialment transduïdes. Els vectors canins, servint-se de vesícules intracel•lulars són transportats, majoritàriament, des de les sinapsis cap al soma neuronal, aquest transport intracel•lular permet una extensa transducció del SNC a partir d’una única injecció intracerebral dels vectors virals. En una segona part d’aquest projecte s’ha avaluat l’ús terapèutic dels CAV2. S’ha injectat un vector helper-dependent que expressa el gen la b-glucuronidasa i el gen de la proteïna verda fluorescent (HD-RIGIE), en el SNC del model caní del síndrome de Sly (MPS VII). La biodistribució i la eficàcia terapèutica han estat avaluades. Els nivells d’activitat enzimàtica en animals malalts injectats amb el vector terapèutic va arribar a valors similars als dels animals no afectes. A més a més s’ha observat una reducció en la quantitat dels GAGs acumulats en les cèl•lules dels animals malalts tractats amb el vector terapèutic, demostrant la potencialitat terapèutica dels CAV2 per a malalties que afecten al SNC. Els resultats aportats en aquest treball ens permeten dir que els CAV2 són unes bones eines terapèutiques per al tractament de malalties que afecten al SNC.
Resumo:
The cDNA encoding the NH2-terminal 589 amino acids of the extracellular domain of the human polymeric immunoglobulin receptor was inserted into transfer vectors to generate recombinant baculo- and vaccinia viruses. Following infection of insect and mammalian cells, respectively, the resulting truncated protein corresponding to human secretory component (hSC) was secreted with high efficiency into serum-free culture medium. The Sf9 insect cell/baculovirus system yielded as much as 50 mg of hSC/liter of culture, while the mammalian cells/vaccinia virus system produced up to 10 mg of protein/liter. The M(r) of recombinant hSC varied depending on the cell line in which it was expressed (70,000 in Sf9 cells and 85-95,000 in CV-1, TK- 143B and HeLa). These variations in M(r) resulted from different glycosylation patterns, as evidenced by endoglycosidase digestion. Efficient single-step purification of the recombinant protein was achieved either by concanavalin A affinity chromatography or by Ni(2+)-chelate affinity chromatography, when a 6xHis tag was engineered to the carboxyl terminus of hSC. Recombinant hSC retained the capacity to specifically reassociate with dimeric IgA purified from hybridoma cells.
Resumo:
A fundamental question in developmental biology is how tissues are patterned to give rise to differentiated body structures with distinct morphologies. The Drosophila wing disc offers an accessible model to understand epithelial spatial patterning. It has been studied extensively using genetic and molecular approaches. Bristle patterns on the thorax, which arise from the medial part of the wing disc, are a classical model of pattern formation, dependent on a pre-pattern of trans-activators and –repressors. Despite of decades of molecular studies, we still only know a subset of the factors that determine the pre-pattern. We are applying a novel and interdisciplinary approach to predict regulatory interactions in this system. It is based on the description of expression patterns by simple logical relations (addition, subtraction, intersection and union) between simple shapes (graphical primitives). Similarities and relations between primitives have been shown to be predictive of regulatory relationships between the corresponding regulatory factors in other Systems, such as the Drosophila egg. Furthermore, they provide the basis for dynamical models of the bristle-patterning network, which enable us to make even more detailed predictions on gene regulation and expression dynamics. We have obtained a data-set of wing disc expression patterns which we are now processing to obtain average expression patterns for each gene. Through triangulation of the images we can transform the expression patterns into vectors which can easily be analysed by Standard clustering methods. These analyses will allow us to identify primitives and regulatory interactions. We expect to identify new regulatory interactions and to understand the basic Dynamics of the regulatory network responsible for thorax patterning. These results will provide us with a better understanding of the rules governing gene regulatory networks in general, and provide the basis for future studies of the evolution of the thorax-patterning network in particular.