986 resultados para sheet flow


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This article describes a computational study of viscous effects on lobed mixer flowfields. The computations, which were carried out using a compressible, three-dimensional, unstructured-mesh Navier-Stokes solver, were aimed at assessing the impacts on mixer performance of inlet boundary-layer thickness and boundary-layer separation within the lobe. The geometries analyzed represent a class of lobed mixer configurations used in turbofan engines. Parameters investigated included lobe penetration angles from 22 to 45 deg, stream-to-stream velocity ratios from 0.5 to 1.0, and two inlet boundary-layer displacement thicknesses. The results show quantitatively the increasing influence of viscous effects as lobe penetration angle is increased. It is shown that the simple estimate of shed circulation given by Skebe et al. (Experimental Investigation of Three-Dimensional Forced Mixer Lobe Flow Field, AIAA Paper 88-3785, July, 1988) can be extended even to situations in which the flow is separated, provided an effective mixer exit angle and height are defined. An examination of different loss sources is also carried out to illustrate the relative contributions of mixing loss and of boundary-layer viscous effects in cases of practical interest.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The following points are argued: (i) there are two independent kinds of interaction on interfaces, i.e. the interaction between phases and the collision interaction, and the jump relations on interfaces can accordingly be resolved; (ii) the stress in a particle can also be divided into background stress and collision stress corresponding to the two kinds of interaction on interfaces respectively; (iii) the collision stress, in fact, has no jump on interface, so the averaged value of its derivative is equal to the derivative of its averaged value; (iv) the stress of solid phase in the basic equations for two\|phase flow should include the collision stress, while the stress in the expression of the inter\|phase force contains the background one only. Based on the arguments, the strict method for deriving the equations for two\|phase flow developed by Drew, Ishii et al. is generalized to the dense two\|phase flow, which involves the effect of collision stress.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

对涡轮流量传感器进行了理论分析,给出了涡轮流量计仪表常数的计算方法,讨论了获得较大固有仪表常数K_0时涡轮传感器结构参数(如叶片数、涡轮半径、口径等)的优化组合问题,通过多相流动实验,总结出K_0与流动密度之间的实验关系,由此给出用涡轮流量计测量多相流的半理论半经验公式,并在油井多相流量测量中得到了实际应用,符合较好。

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Roll waves are frequently observed in overland flow, especially in rill flow, which has an important effect on the development of soil erosion. Using one-dimensional St. Venant equations, this paper investigates the dynamics of periodic roll waves based on Dressler’s and Brock’s work. Under the assumption that the average flow depth equals the uniform flow depth, expressions of the roll-wave speed and roll-wave profile were obtained. Testing with the results observed by Brock (1970) for wave properties shows that these expressions can approximately describe the characteristics of periodic permanent roll waves. Numerical solutions of roll waves under specific conditions are found, which show that when a roll wave appears, the shear stress of flow increases, and the soil erosion accelerates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A large-eddy simulation with transitional structure function(TSF) subgrid model we previously proposed was performed to investigate the turbulent flow with thermal influence over an inhomogeneous canopy, which was represented as alternative large and small roughness elements. The aerodynamic and thermodynamic effects of the presence of a layer of large roughness elements were modelled by adding a drag term to the three-dimensional Navier-Stokes equations and a heat source/sink term to the scalar equation, respectively. The layer of small roughness elements was simply treated using the method as described in paper (Moeng 1984, J. Atmos Sci. 41, 2052-2062) for homogeneous rough surface. The horizontally averaged statistics such as mean vertical profiles of wind velocity, air temperature, et al., are in reasonable agreement with Gao et al.(1989, Boundary layer meteorol. 47, 349-377) field observation (homogeneous canopy). Not surprisingly, the calculated instantaneous velocity and temperature fields show that the roughness elements considerably changed the turbulent structure within the canopy. The adjustment of the mean vertical profiles of velocity and temperature was studied, which was found qualitatively comparable with Belcher et al. (2003, J Fluid Mech. 488, 369-398)'s theoretical results. The urban heat island(UHI) was investigated imposing heat source in the region of large roughness elements. An elevated inversion layer, a phenomenon often observed in the urban area (Sang et al., J Wind Eng. Ind. Aesodyn. 87, 243-258)'s was successfully simulated above the canopy. The cool island(CI) was also investigated imposing heat sink to simply model the evaporation of plant canopy. An inversion layer was found very stable and robust within the canopy.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An experimental study of local orientations around whiskers in deformed metal matrix composites has been used to determine the strain gradients existing in the material following tensile deformation. These strain fields have been represented as arrays of geometrically necessary dislocations, and the material flow stress predicted using a standard dislocation hardening model. Whilst the correlation between this and the measured flow stress is reasonable, the experimentally determined strain gradients are lower by a factor of 5-10 than values obtained in previous estimates made using continuum plasticity finite element models. The local orientations around the whiskers contain a large amount of detailed information about the strain patterns in the material, and a novel approach is made to representing some of this information and to correlating it with microstructural observations. © 1998 Acta Metallurgica Inc. Published by Elsevier Science Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The strain rate dependence of plastic deformation of Ce60Al15CU10Ni15 bulk metallic glass was studied by nanoindentation. Even though the ratio of room temperature to the glass transition temperature was very high (0.72) for this alloy, the plastic deformation was dominated by shear banding under nanoindentation. The alloy exhibited a critical loading rate dependent serrated flow feature. That is, with increasing loading rate, the alloy exhibited a transition from less prominent serrated flow to pronounced serrated flow during continuous loading but from serrated to smoother flow during stepped loading.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Plastic deformation behaviors of Zr65Al10Ni10CU15 and Zr52.5Al10Ni10Cu15Be12.5 bulk metallic glasses (BMGs) are studied by using the depth-sensing nanoindentation, microindentation and uniaxial compression. The Be-containing BMG exhibits a significantly improved overall plastic strain compared with the Be-free alloy during compressive tests. Both BMGs show a loading-rate-dependent serrated flow during nanoindentation measurements, but the Be-containing alloy exhibits a much lower critical loading rate for the disappearance of the serration than the Be-free BMG. The shear band patterns developed during plastic deformation are investigated by microindentation technique, wherein much higher shear band density is found in the Be-containing alloy than in the Be-free alloy, indicating an easier nucleation of shear bands in the former BMG. The difference in the plastic deformation behavior of the two BMGs can be explained by a free volume model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Long, laminar plasma jets at atmospheric pressure of pure argon and a mixture of argon and nitrogen with jet length up to 45 fi,Hes its diameter could be generated with a DC are torch by! restricting the movement of arc root in the torch channel. Effects of torch structure, gas feeding, and characteristics of power supply on the length of plasma jets were experimentally examined. Plasma jets of considerable length and excellent stability could be obtained by regulating the generating parameters, including are channel geometry gas flow I ate, and feeding methods, etc. Influence of flow turbulence at the torch,nozzle exit on the temperature distribution of plasma jets was numerically simulated. The analysis indicated that laminar flow plasma with very low initial turbulent kinetic energy will produce a long jet, with low axial temperature gradient. This kind of long laminar plasma jet could greatly improve the controllability for materials processing, compared with a short turbulent are let.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Free surface deformation is one of the most important physical phenomena in fluids with free surface. In the present paper, convection and surface deformation caused by thermocapillary effect in a rectangular cavity were investigated. In ground experiments, the convection was also affected by gravity. The cavity has a horizontal cross section of 52mm×42mm and the thikkness of the liquid layer is 4mm. Temperature difference between two sides of the liquid layer was increased gradually, and the flow in liquid layer will develop from steady to unstable convection. An optical diagnostic system consisting of a revised Michelson interferometer with image processor was developed to study fluid surface deformation in convection, and the displacements of free surface oscillation were determined. PIV technique was adopted to observe the evolution of flow pattern, and the velocity fields were obtained quantitatively. The present experiments demonstrate that surface deformation is quite distinct in buoyant-thermocapillary convection. in order to understand the mechanism of buoyant-thermocapillary convection, not only the hydrothermal wave instability but also the surface wave instability should be discussed.