988 resultados para shear velocity
Resumo:
The air-sea fluxes of methanol and acetone were measured concurrently using a proton-transfer-reaction mass spectrometer (PTR-MS) with the eddy covariance (EC) technique during the High Wind Gas Exchange Study (HiWinGS) in 2013. The seawater concentrations of these compounds were also measured twice daily with the same PTR-MS coupled to a membrane inlet. Dissolved concentrations near the surface ranged from 7 to 28 nM for methanol and from 3 to 9 nM for acetone. Both gases were consistently transported from the atmosphere to the ocean as a result of their low sea surface saturations. The largest influxes were observed in regions of high atmospheric concentrations and strong winds (up to 25 m s(-1)). Comparison of the total air-sea transfer velocity of these two gases (K-a), along with the in situ sensible heat transfer rate, allows us to constrain the individual gas transfer velocity in the air phase (k(a)) and water phase (k(w)). Among existing parameterizations, the scaling of k(a) from the COARE model is the most consistent with our observations. The k(w) we estimated is comparable to the tangential (shear driven) transfer velocity previously determined from measurements of dimethyl sulfide. Lastly, we estimate the wet deposition of methanol and acetone in our study region and evaluate the lifetimes of these compounds in the surface ocean and lower atmosphere with respect to total (dry plus wet) atmospheric deposition.
Resumo:
Thermocouples are one of the most popular devices for temperature measurement due to their robustness, ease of manufacture and installation, and low cost. However, when used in certain harsh environments, for example, in combustion systems and engine exhausts, large wire diameters are required, and consequently the measurement bandwidth is reduced. This article discusses a software compensation technique to address the loss of high frequency fluctuations based on measurements from two thermocouples. In particular, a difference equation sDEd approach is proposed and compared with existing methods both in simulation and on experimental test rig data with constant flow velocity. It is found that the DE algorithm, combined with the use of generalized total least squares for parameter identification, provides better performance in terms of time constant estimation without any a priori assumption on the time constant ratios of the thermocouples.
Resumo:
This note presents a simple model for prediction of liquid hold-up in two-phase horizontal pipe flow for the stratified roll wave (St+RW) flow regime. Liquid hold-up data for horizontal two-phase pipe flow [1, 2, 3, 4, 5 and 6] exhibit a steady increase with liquid velocity and a more dramatic fall with increasing gas rate as shown by Hand et al. [7 and 8] for example. In addition the liquid hold-up is reported to show an additional variation with pipe diameter. Generally, if the initial liquid rate for the no-gas flow condition gives a liquid height below the pipe centre line, the flow patterns pass successively through the stratified (St), stratified ripple (St+R), stratified roll wave, film plus droplet (F+D) and finally the annular (A+D, A+RW, A+BTS) regimes as the gas rate is increased. Hand et al. [7 and 8] have given a detailed description of this progression in flow regime development and definitions of the patterns involved. Despite the fact that there are over one hundred models which have been developed to predict liquid hold-up, none have been shown to be universally useful, while only a handful have proven to be applicable to specific flow regimes [9, 10, 11 and 12]. One of the most intractable regimes to predict has been the stratified roll wave pattern where the liquid hold-up shows the most dramatic change with gas flow rate. It has been suggested that the momentum balance-type models, which give both hold-up and pressure drop prediction, can predict universally for all flow regimes but particularly in the case of the difficult stratified roll wave pattern. Donnelly [1] recently demonstrated that the momentum balance models experienced some difficulties in the prediction of this regime. Without going into lengthy details, these models differ in the assumed friction factor or shear stress on the surfaces within the pipe particularly at the liquid–gas interface. The Baker–Jardine model [13] when tested against the 0.0454 m i.d. data of Nguyen [2] exhibited a wide scatter for both liquid hold-up and pressure drop as shown in Fig. 1. The Andritsos–Hanratty model [14] gave better prediction of pressure drop but a wide scatter for liquid hold-up estimation (cf. Fig. 2) when tested against the 0.0935 m i.d. data of Hand [5]. The Spedding–Hand model [15], shown in Fig. 3 against the data of Hand [5], gave improved performance but was still unsatisfactory with the prediction of hold-up for stratified-type flows. The MARS model of Grolman [6] gave better prediction of hold-up (cf. Fig. 4) but deterioration in the estimation of pressure drop when tested against the data of Nguyen [2]. Thus no method is available that will accurately predict liquid hold-up across the whole range of flow patterns but particularly for the stratified plus roll wavy regime. The position is particularly unfortunate since the stratified-type regimes are perhaps the most predominant pattern found in multiphase lines.
Resumo:
OBJECTIVE: Impaired flow-mediated dilation (FMD) occurs in disease states associated with atherosclerosis, including SLE. The primary hemodynamic determinant of FMD is wall shear stress, which is critically dependent on the forearm microcirculation. We explored the relationship between FMD, diastolic shear stress (DSS), and the forearm microcirculation in 32 patients with SLE and 19 controls. METHODS AND RESULTS: DSS was calculated using (mean diastolic velocity x 8 x blood viscosity)/baseline brachial artery diameter. Doppler velocity envelopes from the first 15 seconds of reactive hyperemia were analyzed for resistive index (RI), and interrogated in the frequency domain to assess forearm microvascular hemodynamics. FMD was significantly impaired in SLE patients (median, 2.4%; range, -2.1% to 10.7% versus median 5.8%; range, 1.9% to 14%; P