983 resultados para sensore, ottico, assorbanza, scattering, dialisi
Resumo:
The synergistic effect produced by metallic nanoparticles when incorporated into different systems empowers a research field that is growing rapidly. In addition, organometallic materials are at the center of intensive research with diverse applications such as light-emitting devices, transistors, solar cells, and sensors. The Langmuir-Blodgett (LB) technique has proven to be suitable to address challenges inherent to organic devices, since the film properties can be tuned at the molecular level. Here we report a strategy to incorporate gold nanoparticles (AuNPs) into the LB film by co-deposition in order to achieve surface-enhanced Raman scattering (SERS) of the zinc(II)-protoporphyrin (IX) dimethyl ester (ZnPPIX-DME). Prior to the LB co-deposition, the properties of the Langmuir monolayer of ZnPPIX-DME at the air-water interface, containing AuNPs in the subphase, are studied through the surface-pressure versus mean molecular area (π-A) isotherms. The ZnPPIX-DME+AuNPs π-A isotherm presented a significant shift to higher molecular area, suggesting an interaction between both ZnPPIX-DME molecules and AuNPs. Those interactions are a key factor allowing the co-deposition of both AuNPs and ZnPPIX-DME molecules onto a solid substrate, thus forming the LB film. SERS of ZnPPIX-DME was successfully attained, ensuring the spatial distribution of the AuNPs. Higher enhancement factors were found at AuNP aggregates, as a result of the intense local electromagnetic field found in the metal nanoparticle aggregates. The main vibrational bands observed in the SERS spectra suggest a physical adsorption of the ZnPPIX-DME onto the surface of AuNPs. The latter is not only in agreement with the interactions pointed out by the π-A isotherms but also suggests that this interaction is kept upon LB film co-deposition.
Resumo:
We consider, in the electroweak standard model context, several left-right asymmetries in μe elastic scattering at fixed target and collider experiments. For the former case, we show that the muon mass effects are important in a wide energy range. We also show that these asymmetries are sensitive to the electroweak mixing angle θW. The effect of an extra Z' neutral vector boson appearing in a 3-3-1 model is also considered. The capabilities of these asymmetries in the search of this extra Z' are addressed.
Resumo:
Small-angle X-ray scattering (SAXS) was used to study structural characteristics of human serum albumin (HSA) in solution under different pH conditions. Guinier analysis of SAXS results yielded values of the molecular radius of gyration ranging from 26.7 Å to 34.5 Å for pH varying from 2.5 to 7.0. This suggests the existence of significant differences in the overall shape of the molecule at different pH. Molecular models based on subdomains with different spatial configurations were proposed. The distance distribution functions associated with these models were calculated and compared with those determined from the experimental SAXS intensity functions. The conclusion of this SAXS study is that the arrangement of molecular subdomains is clearly pH dependent; the molecule adopting more or less compact configuration for different pH conditions. The conclusions of this systematic study on the modification in molecular shape of HSA as a response to pH changes is consistent with those of previous investigations performed for particular pH conditions.
Resumo:
Highly charged peptides are important components of the immune system and belong to an important family of antibiotics. Although their therapeutic activity is known, most of the molecular level mechanisms are controversial. A wide variety of different approaches are usually applied to understand their mechanisms, but light scattering techniques are frequently overlooked. Yet, light scattering is a noninvasive technique that allows insights both on the peptide mechanism of action as well as on the development of new antibiotics. Dynamic light scattering (DLS) and static light scattering (SLS) are used to measure the aggregation process of lipid vesicles upon addition of peptides and molecular properties (shape, molecular weight). The high charge of these peptides allows electrostatic attraction toward charged lipid vesicles, which is studied by zeta potential (zeta-potential) measurements. Copyright (c) 2008 European Peptide Society and John Wiley & Sons, Ltd.
Resumo:
We propose a new CPT-even and Lorentz-violating nonminimal coupling between fermions and Abelian gauge fields involving the CPT-even tensor (K-F)(mu nu alpha beta) of the standard model extension. We thus investigate its effects on the cross section of the electron-positron scattering by analyzing the process e(+) + e(-) -> mu(+) + mu(-). Such a study was performed for the parity-odd and parity-even nonbirefringent components of the Lorentz-violating (K-F)(mu nu alpha beta) tensor. Finally, by using experimental data available in the literature, we have imposed upper bounds as tight as 10(-12) (eV)(-1) on the magnitude of the CPT-even and Lorentz-violating parameters while nonminimally coupled. DOI: 10.1103/PhysRevD.86.125033
Resumo:
We investigate the effect of Lorentz-violating terms on Bhabha scattering in two distinct cases correspondent to vectorial and axial nonminimal couplings in quantum electrodynamics ( QED). In both cases, we find significant modifications with respect to the usual relativistic result. Our results reveal an anisotropy of the differential cross section which implies new constraints on the possible Lorentz-violating terms.
Resumo:
The photons scattered by the Compton effect can be used to characterize the physical properties of a given sample due to the influence that the electron density exerts on the number of scattered photons. However, scattering measurements involve experimental and physical factors that must be carefully analyzed to predict uncertainty in the detection of Compton photons. This paper presents a method for the optimization of the geometrical parameters of an experimental arrangement for Compton scattering analysis, based on its relations with the energy and incident flux of the X-ray photons. In addition, the tool enables the statistical analysis of the information displayed and includes the coefficient of variation (CV) measurement for a comparative evaluation of the physical parameters of the model established for the simulation. (C) 2012 Elsevier B.V. All rights reserved.