996 resultados para seismic monitoring
Resumo:
The GENESI project has the ambitious goal of bringing WSN technology to the level where it can provide the core of the next generation of systems for structural health monitoring that are long lasting, pervasive and totally distributed and autonomous. This goal requires embracing engineering and scientific challenges never successfully tackled before. Sensor nodes will be redesigned to overcome their current limitations, especially concerning energy storage and provisioning (we need devices with virtually infinite lifetime) and resilience to faults and interferences (for reliability and robustness). New software and protocols will be defined to fully take advantage of the new hardware, providing new paradigms for cross-layer interaction at all layers of the protocol stack and satisfying the requirements of a new concept of Quality of Service (QoS) that is application-driven, truly reflecting the end user perspective and expectations. The GENESI project will develop long lasting sensor nodes by combining cutting edge technologies for energy generation from the environment (energy harvesting) and green energy supply (small form factor fuel cells); GENESI will define models for energy harvesting, energy conservation in super-capacitors and supplemental energy availability through fuel cells, in addition to the design of new algorithms and protocols for dynamic allocation of sensing and communication tasks to the sensors. The project team will design communication protocols for large scale heterogeneous wireless sensor/actuator networks with energy-harvesting capabilities and define distributed mechanisms for context assessment and situation awareness. This paper presents an analysis of the GENESI system requirements in order to achieve the ambitious goals of the project. Extending from the requirements presented, the emergent system specification is discussed with respect to the selection and integration of relevant system components.The resulting integrated system will be evaluated and characterised to ensure that it is capable of satisfying the functional requirements of the project
Resumo:
Science Foundation Ireland (CSET - Centre for Science, Engineering and Technology, Grant No. 07/CE/11147)
Resumo:
Structural Health Monitoring (SHM) is an integral part of infrastructure maintenance and management systems due to socio-economic, safety and security reasons. The behaviour of a structure under vibration depends on structure characteristics. The change of structure characteristics may suggest the change in system behaviour due to the presence of damage(s) within. Therefore the consistent, output signal guided, and system dependable markers would be convenient tool for the online monitoring, the maintenance, rehabilitation strategies, and optimized decision making policies as required by the engineers, owners, managers, and the users from both safety and serviceability aspects. SHM has a very significant advantage over traditional investigations where tangible and intangible costs of a very high degree are often incurred due to the disruption of service. Additionally, SHM through bridge-vehicle interaction opens up opportunities for continuous tracking of the condition of the structure. Research in this area is still in initial stage and is extremely promising. This PhD focuses on using bridge-vehicle interaction response for SHM of damaged or deteriorating bridges to monitor or assess them under operating conditions. In the present study, a number of damage detection markers have been investigated and proposed in order to identify the existence, location, and the extent of an open crack in the structure. The theoretical and experimental investigation has been conducted on Single Degree of Freedom linear system, simply supported beams. The novel Delay Vector Variance (DVV) methodology has been employed for characterization of structural behaviour by time-domain response analysis. Also, the analysis of responses of actual bridges using DVV method has been for the first time employed for this kind of investigation.
Resumo:
The application of biological effect monitoring for the detection of environmental chemical exposure in domestic animals is still in its infancy. This study investigated blood sample preparations in vitro for their use in biological effect monitoring. When peripheral blood mononuclear cells (PBMCs), isolated following the collection of multiple blood samples from sheep in the field, were cryopreserved and subsequently cultured for 24 hours a reduction in cell viability (<80%) was attributed to delays in the processing following collection. Alternative blood sample preparations using rat and sheep blood demonstrated that 3 to 5 hour incubations can be undertaken without significant alterations in the viability of the lymphocytes; however, a substantial reduction in viability was observed after 24 hours in frozen blood. Detectable levels of early and late apoptosis as well as increased levels of ROS were detectable in frozen sheep blood samples. The addition of ascorbic acid partly reversed this effect and reduced the loss in cell viability. The response of the rat and sheep blood sample preparations to genotoxic compounds ex vivo showed that EMS caused comparable dose-dependent genotoxic effects in all sample preparations (fresh and frozen) as detected by the Comet assay. In contrast, the effects of CdCl2 were dependent on the duration of exposure as well as the sample preparation. The analysis of leukocyte subsets in frozen sheep blood showed no alterations in the percentages of T and B lymphocytes but led to a major decrease in the percentage of granulocytes compared to those in the fresh samples. The percentages of IFN-γ and IL-4 but not IL-6 positive cells were comparable between fresh and frozen sheep blood after 4 hour stimulation with phorbol 12-myrisate 13-acetate and ionomycin (PMA+I). These results show that frozen blood gives comparable responses to fresh blood samples in the toxicological and immune assays used.
Resumo:
Background: Many European countries including Ireland lack high quality, on-going, population based estimates of maternal behaviours and experiences during pregnancy. PRAMS is a CDC surveillance program which was established in the United States in 1987 to generate high quality, population based data to reduce infant mortality rates and improve maternal and infant health. PRAMS is the only on-going population based surveillance system of maternal behaviours and experiences that occur before, during and after pregnancy worldwide.Methods: The objective of this study was to adapt, test and evaluate a modified CDC PRAMS methodology in Ireland. The birth certificate file which is the standard approach to sampling for PRAMS in the United States was not available for the PRAMS Ireland study. Consequently, delivery record books for the period between 3 and 5 months before the study start date at a large urban obstetric hospital [8,900 births per year] were used to randomly sample 124 women. Name, address, maternal age, infant sex, gestational age at delivery, delivery method, APGAR score and birth weight were manually extracted from records. Stillbirths and early neonatal deaths were excluded using APGAR scores and hospital records. Women were sent a letter of invitation to participate including option to opt out, followed by a modified PRAMS survey, a reminder letter and a final survey.Results: The response rate for the pilot was 67%. Two per cent of women refused the survey, 7% opted out of the study and 24% did not respond. Survey items were at least 88% complete for all 82 respondents. Prevalence estimates of socially undesirable behaviours such as alcohol consumption during pregnancy were high [>50%] and comparable with international estimates.Conclusion: PRAMS is a feasible and valid method of collecting information on maternal experiences and behaviours during pregnancy in Ireland. PRAMS may offer a potential solution to data deficits in maternal health behaviour indicators in Ireland with further work. This study is important to researchers in Europe and elsewhere who may be interested in new ways of tailoring an established CDC methodology to their unique settings to resolve data deficits in maternal health.
Resumo:
Background: On-going surveillance of behaviours during pregnancy is an important but overlooked population health activity that is particularly lacking in Ireland. Few, if any, nationally representative estimates of most maternal behaviours and experiences are available. While on-going surveillance of maternal behaviours has not been a priority thus far in European countries including Ireland, on-going surveillance was identified as a key priority in the United States (US) during the 1980’s when the Pregnancy Risk Assessment Monitoring System (PRAMS), was established. Today, PRAMS is the only surveillance programme of maternal behaviours and experiences world-wide. Although on-going prevalence estimates are required in Ireland, studies which examine the offspring health effects of maternal behaviours are also required, since various questions regarding maternal exposures and their offspring health effects remain unanswered. Gestational alcohol consumption is one such important maternal exposure which is common in pregnancy, though its offspring health effects are unclear, particularly at lower or moderate levels. Thus, guidelines internationally have not reached consensus on safe alcohol recommendations for pregnant women. The aims of this thesis are to implement the PRAMS in Ireland (PRAMS Ireland), to describe the prevalence of health behaviours around the time of pregnancy in Ireland and to examine the effect of health behaviours on pregnancy and child outcomes (specifically the relationship between alcohol use during pregnancy and infant and child growth). Structure: In Chapter 1, a brief background and rationale for the work, as well as the thesis aims and objective is provided. A detailed description of the design and implementation of PRAMS Ireland is described in Chapter 2. Chapter 3 and Chapter 4 describe the methodological results of the implementation of the PRAMS Ireland pilot study and PRAMS Ireland main study. In Chapter 5, a comparison of alcohol prevalence in two Irish studies (PRAMS Ireland and Growing up in Ireland (GUI)) and one multi-centre prospective cohort study, Screening for Pregnancy Endpoints (SCOPE) Study is detailed. Chapter 6 describes findings on adherence to National Clinical Guidelines on health behaviours and nutrition around the time of pregnancy in PRAMS Ireland. Findings on exposure to alcohol use in pregnancy and infant growth outcomes are described in Chapter 7 and Chapter 8. The results of analysis conducted to examine the impact of gestational alcohol use on offspring growth trajectories to age ten are described in Chapter 9. Finally, a discussion of the findings, strengths and limitations of the thesis, direction for future research, policy, practice and public health implications are discussed in Chapter 10.Results: Implementation of PRAMS: PRAMS may be an effective system for the surveillance of health behaviours around the time of pregnancy in the Irish context. PRAMS Ireland had high response rates (67% and 61% response rates in the pilot and main study respectively), high item completion rates and valid prevalence estimates for many health behaviours. Examining prevalence of health behaviours: We found high levels of alcohol consumption before and during pregnancy, poor adherence to healthy diets and high levels of smoking before and during pregnancy among women in Ireland. Socially disadvantaged women had higher rates of deleterious health behaviours before pregnancy, although women with the most deleterious behaviour profiles before pregnancy appeared to experience the greatest gain in protective health behaviours during pregnancy. The impact of alcohol use on infant and offspring growth: We found that low and moderate levels of alcohol use did not impact on birth outcomes or offspring growth whereas heavy alcohol consumption resulted in reduced birth length and birth weight; however, this finding was not consistently observed across all studies. Selection, reporting and confounding biases which are common in observational research could be masking harmful effects. Conclusion: PRAMS is a valid and feasible method of surveillance of health behaviours around the time of pregnancy in Ireland. A surveillance program of maternal behaviours and experiences is immediately warranted due to high levels of deleterious health behaviours around the time of pregnancy in Ireland. Although our results do not indicate any evidence of harm, given the quality of evidence available, abstinence and advice of abstinence from alcohol may be the most prudent choice for patients and healthcare professionals respectively. Further studies of the effects of gestational alcohol use are required; particularly those which can reduce selection bias, reporting bias and confounding.
Resumo:
It is estimated that the quantity of digital data being transferred, processed or stored at any one time currently stands at 4.4 zettabytes (4.4 × 2 70 bytes) and this figure is expected to have grown by a factor of 10 to 44 zettabytes by 2020. Exploiting this data is, and will remain, a significant challenge. At present there is the capacity to store 33% of digital data in existence at any one time; by 2020 this capacity is expected to fall to 15%. These statistics suggest that, in the era of Big Data, the identification of important, exploitable data will need to be done in a timely manner. Systems for the monitoring and analysis of data, e.g. stock markets, smart grids and sensor networks, can be made up of massive numbers of individual components. These components can be geographically distributed yet may interact with one another via continuous data streams, which in turn may affect the state of the sender or receiver. This introduces a dynamic causality, which further complicates the overall system by introducing a temporal constraint that is difficult to accommodate. Practical approaches to realising the system described above have led to a multiplicity of analysis techniques, each of which concentrates on specific characteristics of the system being analysed and treats these characteristics as the dominant component affecting the results being sought. The multiplicity of analysis techniques introduces another layer of heterogeneity, that is heterogeneity of approach, partitioning the field to the extent that results from one domain are difficult to exploit in another. The question is asked can a generic solution for the monitoring and analysis of data that: accommodates temporal constraints; bridges the gap between expert knowledge and raw data; and enables data to be effectively interpreted and exploited in a transparent manner, be identified? The approach proposed in this dissertation acquires, analyses and processes data in a manner that is free of the constraints of any particular analysis technique, while at the same time facilitating these techniques where appropriate. Constraints are applied by defining a workflow based on the production, interpretation and consumption of data. This supports the application of different analysis techniques on the same raw data without the danger of incorporating hidden bias that may exist. To illustrate and to realise this approach a software platform has been created that allows for the transparent analysis of data, combining analysis techniques with a maintainable record of provenance so that independent third party analysis can be applied to verify any derived conclusions. In order to demonstrate these concepts, a complex real world example involving the near real-time capturing and analysis of neurophysiological data from a neonatal intensive care unit (NICU) was chosen. A system was engineered to gather raw data, analyse that data using different analysis techniques, uncover information, incorporate that information into the system and curate the evolution of the discovered knowledge. The application domain was chosen for three reasons: firstly because it is complex and no comprehensive solution exists; secondly, it requires tight interaction with domain experts, thus requiring the handling of subjective knowledge and inference; and thirdly, given the dearth of neurophysiologists, there is a real world need to provide a solution for this domain
Resumo:
A number of different interferon-gamma ELISpot protocols are in use in laboratories studying antigen-specific immune responses. It is therefore unclear how results from different assays compare, and what factors most significantly influence assay outcome. One such difference is that some laboratories use a short in vitro stimulation period of cells before they are transferred to the ELISpot plate; this is commonly done in the case of frozen cells, in order to enhance assay sensitivity. Other differences that may be significant include antibody coating of plates, the use of media with or without serum, the serum source and the number of cells added to the wells. The aim of this paper was to identify which components of the different ELISpot protocols influenced assay sensitivity and inter-laboratory variation. Four laboratories provided protocols for quantifying numbers of interferon-gamma spot forming cells in human peripheral blood mononuclear cells stimulated with Mycobacterium tuberculosis derived antigens. The differences in the protocols were compared directly. We found that several sources of variation in assay protocols can be eliminated, for example by avoiding serum supplementation and using AIM-V serum free medium. In addition, the number of cells added to ELISpot wells should also be standardised. Importantly, delays in peripheral blood mononuclear cell processing before stimulation had a marked effect on the number of detectable spot forming cells; processing delay thus should be minimised as well as standardised. Finally, a pre-stimulation culture period improved the sensitivity of the assay, however this effect may be both antigen and donor dependent. In conclusion, small differences in ELISpot protocols in routine use can affect the results obtained and care should be given to conditions selected for use in a given study. A pre-stimulation step may improve the sensitivity of the assay, particularly when cells have been previously frozen.
Resumo:
We conducted a pilot study on 10 patients undergoing general surgery to test the feasibility of diffuse reflectance spectroscopy in the visible wavelength range as a noninvasive monitoring tool for blood loss during surgery. Ratios of raw diffuse reflectance at wavelength pairs were tested as a first-pass for estimating hemoglobin concentration. Ratios can be calculated easily and rapidly with limited post-processing, and so this can be considered a near real-time monitoring device. We found the best hemoglobin correlations were when ratios at isosbestic points of oxy- and deoxyhemoglobin were used, specifically 529/500 nm. Baseline subtraction improved correlations, specifically at 520/509 nm. These results demonstrate proof-of-concept for the ability of this noninvasive device to monitor hemoglobin concentration changes due to surgical blood loss. The 529/500 nm ratio also appears to account for variations in probe pressure, as determined from measurements on two volunteers.
Resumo:
Factors influencing apoptosis of vertebrate eggs and early embryos have been studied in cell-free systems and in intact embryos by analyzing individual apoptotic regulators or caspase activation in static samples. A novel method for monitoring caspase activity in living Xenopus oocytes and early embryos is described here. The approach, using microinjection of a near-infrared caspase substrate that emits fluorescence only after its proteolytic cleavage by active effector caspases, has enabled the elucidation of otherwise cryptic aspects of apoptotic regulation. In particular, we show that brief caspase activity (10 min) is sufficient to cause apoptotic death in this system. We illustrate a cytochrome c dose threshold in the oocyte, which is lowered by Smac, a protein that binds thereby neutralizing the inhibitor of apoptosis proteins. We show that meiotic oocytes develop resistance to cytochrome c, and that the eventual death of oocytes arrested in meiosis is caspase-independent. Finally, data acquired through imaging caspase activity in the Xenopus embryo suggest that apoptosis in very early development is not cell-autonomous. These studies both validate this assay as a useful tool for apoptosis research and reveal subtleties in the cell death program during early development. Moreover, this method offers a potentially valuable screening modality for identifying novel apoptotic regulators.
Resumo:
Retinoic acids (13-cis and 13-trans) are known teratogens, and their precursor is retinol, a form of vitamin A. In 1995, Rothman et al demonstrated an association between excessive vitamin A, >10,000 IU/day, during the first trimester of pregnancy and teratogenic effects, particularly in the central nervous system. However, vitamin A deficiency has long been known to be deleterious to the mother and fetus. Therefore, there may be a narrow therapeutic ratio for vitamin A during pregnancy that has not previously been fully appreciated. Neurodevelopmental disorders may not be apparent by macroscopic brain examination or imaging, and proving the existence of a behavioral teratogen is not straightforward. However, an excess of retinoic acid and some neurodevelopmental disorders are both associated with abnormalities in cerebellar morphology. Physical and chemical evidence strongly supports the notion that beta carotene crosses the placenta and is metabolized to retinol. Only very limited amounts of beta carotene are stored in fetal fat cells as evidenced by the fact that maternal fat is yellow from beta carotene, whereas non-brown neonatal fat is white. Furthermore, newborns of carotenemic mothers do not share the yellow complexion of their mothers. The excess 13-trans retinoic acid derived from metabolized beta carotene in the fetus increases the concentration of the more teratogenic 13-cis retinoic acid since the isomerization equilibrium is shifted to the left. Therefore, this paper proposes that consideration be given to monitoring all potential sources of fetal 13-cis and 13-trans retinoic acid, including nutritional supplements, dietary retinol, and beta carotene, particularly in the first trimester of pregnancy.
Resumo:
It is essential to keep track of the movements we make, and one way to do that is to monitor correlates, or corollary discharges, of neuronal movement commands. We hypothesized that a previously identified pathway from brainstem to frontal cortex might carry corollary discharge signals. We found that neuronal activity in this pathway encodes upcoming eye movements and that inactivating the pathway impairs sequential eye movements consistent with loss of corollary discharge without affecting single eye movements. These results identify a pathway in the brain of the primate Macaca mulatta that conveys corollary discharge signals.
Resumo:
CONCLUSION Radiation dose reduction, while saving image quality could be easily implemented with this approach. Furthermore, the availability of a dosimetric data archive provides immediate feedbacks, related to the implemented optimization strategies. Background JCI Standards and European Legislation (EURATOM 59/2013) require the implementation of patient radiation protection programs in diagnostic radiology. Aim of this study is to demonstrate the possibility to reduce patients radiation exposure without decreasing image quality, through a multidisciplinary team (MT), which analyzes dosimetric data of diagnostic examinations. Evaluation Data from CT examinations performed with two different scanners (Siemens DefinitionTM and GE LightSpeed UltraTM) between November and December 2013 are considered. CT scanners are configured to automatically send images to DoseWatch© software, which is able to store output parameters (e.g. kVp, mAs, pitch ) and exposure data (e.g. CTDIvol, DLP, SSDE). Data are analyzed and discussed by a MT composed by Medical Physicists and Radiologists, to identify protocols which show critical dosimetric values, then suggest possible improvement actions to be implemented. Furthermore, the large amount of data available allows to monitor diagnostic protocols currently in use and to identify different statistic populations for each of them. Discussion We identified critical values of average CTDIvol for head and facial bones examinations (respectively 61.8 mGy, 151 scans; 61.6 mGy, 72 scans), performed with the GE LightSpeed CTTM. Statistic analysis allowed us to identify the presence of two different populations for head scan, one of which was only 10% of the total number of scans and corresponded to lower exposure values. The MT adopted this protocol as standard. Moreover, the constant output parameters monitoring allowed us to identify unusual values in facial bones exams, due to changes during maintenance service, which the team promptly suggested to correct. This resulted in a substantial dose saving in CTDIvol average values of approximately 15% and 50% for head and facial bones exams, respectively. Diagnostic image quality was deemed suitable for clinical use by radiologists.
Resumo:
info:eu-repo/semantics/published