996 resultados para rho-percolation


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Migrating lymphocytes acquire a polarized phenotype with a leading and a trailing edge, or uropod. Although in vitro experiments in cell lines or activated primary cell cultures have established that Rho-p160 coiled-coil kinase (ROCK)-myosin II-mediated uropod contractility is required for integrin de-adhesion on two-dimensional surfaces and nuclear propulsion through narrow pores in three-dimensional matrices, less is known about the role of these two events during the recirculation of primary, nonactivated lymphocytes. Using pharmacological antagonists of ROCK and myosin II, we report that inhibition of uropod contractility blocked integrin-independent mouse T cell migration through narrow, but not large, pores in vitro. T cell crawling on chemokine-coated endothelial cells under shear was severely impaired by ROCK inhibition, whereas transendothelial migration was only reduced through endothelial cells with high, but not low, barrier properties. Using three-dimensional thick-tissue imaging and dynamic two-photon microscopy of T cell motility in lymphoid tissue, we demonstrated a significant role for uropod contractility in intraluminal crawling and transendothelial migration through lymph node, but not bone marrow, endothelial cells. Finally, we demonstrated that ICAM-1, but not anatomical constraints or integrin-independent interactions, reduced parenchymal motility of inhibitor-treated T cells within the dense lymphoid microenvironment, thus assigning context-dependent roles for uropod contraction during lymphocyte recirculation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective Increasing plasma glucose levels are associated with increasing risk of vascular disease. We tested the hypothesis that there is a glycaemia-mediated impairment of reverse cholesterol transport (RCT). We studied the influence of plasma glucose on expression and function of a key mediator in RCT, the ATP binding cassette transporter-A1 (ABCA1) and expression of its regulators, liver X receptor-α (LXRα) and peroxisome proliferator-activated receptor–γ (PPARγ). Methods and Results Leukocyte ABCA1, LXRα and PPARγ expression was measured by polymerase chain reaction in 63 men with varying degrees of glucose homeostasis. ABCA1 protein concentrations were measured in leukocytes. In a sub-group of 25 men, ABCA1 function was quantified as apolipoprotein-A1-mediated cholesterol efflux from 2–3 week cultured skin fibroblasts. Leukocyte ABCA1 expression correlated negatively with circulating HbA1c and glucose (rho = −0.41, p<0.001; rho = −0.34, p = 0.006 respectively) and was reduced in Type 2 diabetes (T2DM) (p = 0.03). Leukocyte ABCA1 protein was lower in T2DM (p = 0.03) and positively associated with plasma HDL cholesterol (HDL-C) (rho = 0.34, p = 0.02). Apolipoprotein-A1-mediated cholesterol efflux correlated negatively with fasting glucose (rho = −0.50, p = 0.01) and positively with HDL-C (rho = 0.41, p = 0.02). It was reduced in T2DM compared with controls (p = 0.04). These relationships were independent of LXRα and PPARγ expression. Conclusions ABCA1 expression and protein concentrations in leukocytes, as well as function in cultured skin fibroblasts, are reduced in T2DM. ABCA1 protein concentration and function are associated with HDL-C levels. These findings indicate a glycaemia- related, persistent disruption of a key component of RCT.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Theileria parasites invade and transform bovine leukocytes causing either East Coast fever (T. parva), or tropical theileriosis (T. annulata). Susceptible animals usually die within weeks of infection, but indigenous infected cattle show markedly reduced pathology, suggesting that host genetic factors may cause disease susceptibility. Attenuated live vaccines are widely used to control tropical theileriosis and attenuation is associated with reduced invasiveness of infected macrophages in vitro. Disease pathogenesis is therefore linked to aggressive invasiveness, rather than uncontrolled proliferation of Theileria-infected leukocytes. We show that the invasive potential of Theileria-transformed leukocytes involves TGF-b signalling. Attenuated live vaccine lines express reduced TGF-b2 and their invasiveness can be rescued with exogenous TGF-b. Importantly, infected macrophages from disease susceptible Holstein-Friesian (HF) cows express more TGF-b2 and traverse Matrigel with great efficiency compared to those from disease-resistant Sahiwal cattle. Thus, TGF-b2 levels correlate with disease susceptibility. Using fluorescence and time-lapse video microscopy we show that Theileria-infected, disease-susceptible HF macrophages exhibit increased actin dynamics in their lamellipodia and podosomal adhesion structures and develop more membrane blebs. TGF-b2-associated invasiveness in HF macrophages has a transcription-independent element that relies on cytoskeleton remodelling via activation of Rho kinase (ROCK). We propose that a TGF-b autocrine loop confers an amoeboid-like motility on Theileria-infected leukocytes, which combines with MMP-dependent motility to drive invasiveness and virulence.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Dendritic cell (DC) migration via lymphatic vessels to draining lymph nodes (dLNs) is crucial for the initiation of adaptive immunity. We imaged this process by intravital microscopy (IVM) in the ear skin of transgenic mice bearing red-fluorescent vasculature and yellow-fluorescent DCs. DCs within lymphatic capillaries were rarely transported by flow, but actively migrated within lymphatics and were significantly faster than in the interstitium. Pharmacologic blockade of the Rho-associated protein kinase (ROCK), which mediates nuclear contraction and de-adhesion from integrin ligands, significantly reduced DC migration from skin to dLNs in steady-state. IVM revealed that ROCK blockade strongly reduced the velocity of interstitial DC migration, but only marginally affected intralymphatic DC migration. By contrast, during tissue inflammation, ROCK blockade profoundly decreased both interstitial and intralymphatic DC migration. Inhibition of intralymphatic migration was paralleled by a strong up-regulation of ICAM-1 in lymphatic endothelium, suggesting that during inflammation ROCK mediates de-adhesion of DC-expressed integrins from lymphatic-expressed ICAM-1. Flow chamber assays confirmed an involvement of lymphatic-expressed ICAM-1 and DC-expressed ROCK in DC crawling on lymphatic endothelium. Overall, our findings further define the role of ROCK in DC migration to dLNs and reveal a differential requirement for ROCK in intralymphatic DC crawling during steady-state and inflammation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fuel cells are a topic of high interest in the scientific community right now because of their ability to efficiently convert chemical energy into electrical energy. This thesis is focused on solid oxide fuel cells (SOFCs) because of their fuel flexibility, and is specifically concerned with the anode properties of SOFCs. The anodes are composed of a ceramic material (yttrium stabilized zirconia, or YSZ), and conducting material. Recent research has shown that an infiltrated anode may offer better performance at a lower cost. This thesis focuses on the creation of a model of an infiltrated anode that mimics the underlying physics of the production process. Using the model, several key parameters for anode performance are considered. These are the initial volume fraction of YSZ in the slurry before sintering, the final porosity of the composite anode after sintering, and the size of the YSZ and conducting particles in the composite. The performance measures of the anode, namely percolation threshold and effective conductivity, are analyzed as a function of these important input parameters. Simple two and three-dimensional percolation models are used to determine the conditions at which the full infiltrated anode would be investigated. These more simple models showed that the aspect ratio of the anode has no effect on the threshold or effective conductivity, and that cell sizes of 303 are needed to obtain accurate conductivity values. The full model of the infiltrated anode is able to predict the performance of the SOFC anodes and it can be seen that increasing the size of the YSZ decreases the percolation threshold and increases the effective conductivity at low conductor loadings. Similar trends are seen for a decrease in final porosity and a decrease in the initial volume fraction of YSZ.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid oxide fuel cells (SOFCs) provide a potentially clean way of using energy sources. One important aspect of a functioning fuel cell is the anode and its characteristics (e.g. conductivity). Using infiltration of conductor particles has been shown to be a method for production at lower cost with comparable functionality. While these methods have been demonstrated experimentally, there is a vast range of variables to consider. Because of the long time for manufacture, a model is desired to aid in the development of the desired anode formulation. This thesis aims to (1) use an idealized system to determine the appropriate size and aspect ratio to determine the percolation threshold and effective conductivity as well as to (2) simulate the infiltrated fabrication method to determine the effective conductivity and percolation threshold as a function of ceramic and pore former particle size, particle fraction and the cell¿s final porosity. The idealized system found that the aspect ratio of the cell does not affect the cells functionality and that an aspect ratio of 1 is the most efficient computationally to use. Additionally, at cell sizes greater than 50x50, the conductivity asymptotes to a constant value. Through the infiltrated model simulations, it was found that by increasing the size of the ceramic (YSZ) and pore former particles, the percolation threshold can be decreased and the effective conductivity at low loadings can be increased. Furthermore, by decreasing the porosity of the cell, the percolation threshold and effective conductivity at low loadings can also be increased

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Solid oxide fuel cell (SOFC) technology has the potential to be a significant player in our future energy technology repertoire based on its ability to convert chemical energy into electrical energy. Infiltrated SOFCs, in particular, have demonstrated improved performance and at lower cost than traditional SOFCs. An infiltrated electrode comprises porous ceramic scaffolding (typically constructed from the oxygen ion conducting material) that is infiltrated with electron conducting and catalytic particles. Two important SOFC electrode properties are effective conductivity and three phase boundary density (TPB). Researchers study these electrode properties separately, and fail to recognize them as competing properties. This thesis aims to (1) develop a method to model the TPB density and use it to determine the effect of porosity, scaffolding particle size, and pore former size on TPB density as well as to (2) compare the effect of porosity, scaffolding particle size, and pore former size on TPB density and effective conductivity to determine a desired set of parameters for infiltrated SOFC electrode performance. A computational model was used to study the effect of microstructure parameters on the effective conductivity and TPB density of the infiltrated SOFC electrode. From this study, effective conductivity and TPB density are determined to be competing properties of SOFC electrodes. Increased porosity, scaffolding particle size, and pore former particle size increase the effective conductivity for a given infiltrate loading above percolation threshold. Increased scaffolding particle size and pore former size ratio, however, decreases the TPB density. The maximum TPB density is achievable between porosities of 45% and 60%. The effect of microstructure parameters are more prominent at low loading with scaffolding particle size being the most significant factor and pore former size ratio being the least significant factor.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

OBJECTIVES: Donation after circulatory declaration of death (DCDD) could significantly improve the number of cardiac grafts for transplantation. Graft evaluation is particularly important in the setting of DCDD given that conditions of cardio-circulatory arrest and warm ischaemia differ, leading to variable tissue injury. The aim of this study was to identify, at the time of heart procurement, means to predict contractile recovery following cardioplegic storage and reperfusion using an isolated rat heart model. Identification of reliable approaches to evaluate cardiac grafts is key in the development of protocols for heart transplantation with DCDD. METHODS: Hearts isolated from anaesthetized male Wistar rats (n = 34) were exposed to various perfusion protocols. To simulate DCDD conditions, rats were exsanguinated and maintained at 37°C for 15-25 min (warm ischaemia). Isolated hearts were perfused with modified Krebs-Henseleit buffer for 10 min (unloaded), arrested with cardioplegia, stored for 3 h at 4°C and then reperfused for 120 min (unloaded for 60 min, then loaded for 60 min). Left ventricular (LV) function was assessed using an intraventricular micro-tip pressure catheter. Statistical significance was determined using the non-parametric Spearman rho correlation analysis. RESULTS: After 120 min of reperfusion, recovery of LV work measured as developed pressure (DP)-heart rate (HR) product ranged from 0 to 15 ± 6.1 mmHg beats min(-1) 10(-3) following warm ischaemia of 15-25 min. Several haemodynamic parameters measured during early, unloaded perfusion at the time of heart procurement, including HR and the peak systolic pressure-HR product, correlated significantly with contractile recovery after cardioplegic storage and 120 min of reperfusion (P < 0.001). Coronary flow, oxygen consumption and lactate dehydrogenase release also correlated significantly with contractile recovery following cardioplegic storage and 120 min of reperfusion (P < 0.05). CONCLUSIONS: Haemodynamic and biochemical parameters measured at the time of organ procurement could serve as predictive indicators of contractile recovery. We believe that evaluation of graft suitability is feasible prior to transplantation with DCDD, and may, consequently, increase donor heart availability.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The regulation of cell morphology is a dynamic process under the control of multiple protein complexes acting in a coordinated manner. Phosphoinositide 3-kinases (PI3K) and their lipid products are widely involved in cytoskeletal regulation by interacting with proteins regulating RhoGTPases. Class II PI3K isoforms have been implicated in the regulation of the actin cytoskeleton, although their exact role and mechanism of action remain to be established. In this report, we have identified Dbl, a Rho family guanine nucleotide exchange factor (RhoGEF) as an interaction partner of PI3KC2β. Dbl was co-immunoprecipitated with PI3KC2β in NIH3T3 cells and cancer cell lines. Over-expression of Class II phosphoinositide 3-kinase PI3KC2β in NIH3T3 fibroblasts led to increased stress fibres formation and cell spreading. Accordingly, we found high basal RhoA activity and increased serum response factor (SRF) activation downstream of RhoA upon serum stimulation. In contrast, the dominant-negative form of PI3KC2β strongly reduced cell spreading and stress fibres formation, as well as SRF response. Platelet-derived growth factor (PDGF) stimulation of wild-type PI3KC2β over-expressing NIH3T3 cells strongly increased Rac and c-Jun N-terminal kinase (JNK) activation, but failed to show similar effect in the cells with the dominant-negative enzyme. Interestingly, epidermal growth factor (EGF) and PDGF stimulation led to increased extracellular signal-regulated kinase (Erk) and Akt pathway activation in cells with elevated wild-type PI3KC2β expression. Furthermore, increased expression of PI3KC2β protected NIH3T3 from detachment-dependent death (anoikis) in a RhoA-dependent manner. Taken together, these findings suggest that PI3KC2β modulates the cell morphology and survival through a specific interaction with Dbl and the activation of RhoA.

Relevância:

10.00% 10.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In chick embryo fibroblasts, the mRNA for extracellular matrix protein tenascin-C is induced 2-fold by cyclic strain (10%, 0.3 Hz, 6 h). This response is attenuated by inhibiting Rho-dependent kinase (ROCK). The RhoA/ROCK signaling pathway is primarily involved in actin dynamics. Here, we demonstrate its crucial importance in regulating tenascin-C expression. Cyclic strain stimulated RhoA activation and induced fibroblast contraction. Chemical activators of RhoA synergistically enhanced the effects of cyclic strain on cell contractility. Interestingly, tenascin-C mRNA levels perfectly matched the extent of RhoA/ROCK-mediated actin contraction. First, RhoA activation by thrombin, lysophosphatidic acid, or colchicine induced tenascin-C mRNA to a similar extent as strain. Second, RhoA activating drugs in combination with cyclic strain caused a super-induction (4- to 5-fold) of tenascin-C mRNA, which was again suppressed by ROCK inhibition. Third, disruption of the actin cytoskeleton with latrunculin A abolished induction of tenascin-C mRNA by chemical RhoA activators in combination with cyclic strain. Lastly, we found that myosin II activity is required for tenascin-C induction by cyclic strain. We conclude that RhoA/ROCK-controlled actin contractility has a mechanosensory function in fibroblasts that correlates directly with tenascin-C gene expression. Previous RhoA/ROCK activation, either by chemical or mechanical signals, might render fibroblasts more sensitive to external tensile stress, e.g., during wound healing.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Idiopathic pulmonary fibrosis (IPF) is characterized by an uncontrolled accumulation and activation of lung fibroblasts. A modulation of fibroblast activation has been observed in various systems with octreotide, a synthetic somatostatin analog with strong affinity for the somatostatin receptor subtype 2 (sst2). One aim of our study was to evaluate the expression of somatostatin receptors in the lungs of patients with IPF. A second aim was to evaluate the relationship between 111In-octreotide uptake and the effect of pulmonary fibrosis as assessed by lung function tests and parameters and by radiologic findings. METHODS: We investigated 11 patients with IPF, 6 patients with pulmonary fibrosis associated with systemic sclerosis (SSc), and 19 patients with disease not of the lung (control patients). The expression of somatostatin receptors was evaluated in vivo using 111In-octreotide scintigraphy. We evaluated the relationship between 111In-octreotide uptake and the activity of pulmonary fibrosis as assessed by lung function tests, bronchoalveolar lavage (BAL) cellularity, and high-resolution CT (HRCT) of the chest. Planar images and thoracic SPECT (24 h) were performed after injection of 222 MBq of 111In-octreotide. Lung uptake was quantified using the lung-to-background ratio (L/B). In addition, the expression of sst2 was evaluated in vitro, in frozen lung-tissue samples using autoradiography, and in human cultures of lung fibroblasts using a ligand-binding assay. RESULTS: Compared with lung uptake in control patients (median L/B, 1.25; range, 1.14-1.49), lung uptake was increased in all 11 IPF patients (median L/B, 2.63; range, 1.59-3.13; P < 0.001) and in 4 of 6 SSc patients (median L/B, 1.68; range, 1.42-2.16). The L/B was lower in SSc patients than in IPF patients (P = 0.011). Increased uptake correlated with the alteration of lung function (carbon monoxide diffusing capacity [rho = -0.655; P = 0.038], diffusing capacity for carbon monoxide and alveolar volume ratio [rho = -0.627; P = 0.047], vital capacity [rho = -0.609; P = 0.054], and total lung capacity [rho = -0.598; P = 0.058]) and with the intensity of alveolitis (total BAL cellularity [rho = 0.756; P = 0.045], neutrophil counts [rho = 0.738; P = 0.05]), and HRCT fibrosis score (rho = 0.673; P = 0.007). Autoradiography suggested that vascular structures were a prominent binding site. Lung fibroblasts expressed somatostatin receptors in vitro as measured by binding assay. CONCLUSION: Our preliminary results identified an increased expression of sst2 in (mainly idiopathic) pulmonary fibrosis. Lung uptake correlates with the alteration of lung function and with the intensity of alveolitis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

PURPOSE: To test the hypothesis that the extension of areas with increased fundus autofluorescence (FAF) outside atrophic patches correlates with the rate of spread of geographic atrophy (GA) over time in eyes with age-related macular degeneration (AMD). METHODS: The database of the multicenter longitudinal natural history Fundus Autofluorescence in AMD (FAM) Study was reviewed for patients with GA recruited through the end of August 2003, with follow-up examinations within at least 1 year. Only eyes with sufficient image quality and with diffuse patterns of increased FAF surrounding atrophy were chosen. In standardized digital FAF images (excitation, 488 nm; emission, >500 nm), total size and spread of GA was measured. The convex hull (CH) of increased FAF as the minimum polygon encompassing the entire area of increased FAF surrounding the central atrophic patches was quantified at baseline. Statistical analysis was performed with the Spearman's rank correlation coefficient (rho). RESULTS: Thirty-nine eyes of 32 patients were included (median age, 75.0 years; interquartile range [IQR], 67.8-78.9); median follow-up, 1.87 years; IQR, 1.43-3.37). At baseline, the median total size of atrophy was 7.04 mm2 (IQR, 4.20-9.88). The median size of the CH was 21.47 mm2 (IQR, 15.19-28.26). The median rate of GA progression was 1.72 mm2 per year (IQR, 1.10-2.83). The area of increased FAF around the atrophy (difference between the CH and the total GA size at baseline) showed a positive correlation with GA enlargement over time (rho=0.60; P=0.0002). CONCLUSIONS: FAF characteristics that are not identified by fundus photography or fluorescein angiography may serve as a prognostic determinant in advanced atrophic AMD. As the FAF signal originates from lipofuscin (LF) in postmitotic RPE cells and since increased FAF indicates excessive LF accumulation, these findings would underscore the pathophysiological role of RPE-LF in AMD pathogenesis.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Type III protein secretion has been shown recently to be important in the virulence of the fish pathogen Aeromonas salmonicida. The ADP-ribosylating toxin Aeromonas exoenzyme T (AexT) is one effector protein targeted for secretion via this system. In this study, we identified muscular and nonmuscular actin as substrates of the ADP-ribosylating activity of AexT. Furthermore, we show that AexT also functions as a GTPase-activating protein (GAP), displaying GAP activity against monomeric GTPases of the Rho family, specifically Rho, Rac, and Cdc42. Transfection of fish cells with wild type AexT resulted in depolymerization of the actin cytoskeleton and cell rounding. Point mutations within either the GAP or the ADP-ribosylating active sites of AexT (Arg-143 as well as Glu-398 and Glu-401, respectively) abolished enzymatic activity, yet did not prevent actin filament depolymerization. However, inactivation of the two catalytic sites simultaneously did. These results suggest that both the GAP and ADP-ribosylating domains of AexT contribute to its biological activity. This is the first bacterial virulence factor to be described that has a specific actin ADP-ribosylation activity and GAP activity toward Rho, Rac, and Cdc42, both enzymatic activities contributing to actin filament depolymerization.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Rat Walker 256 carcinosarcoma cells spontaneously develop front-tail polarity and migrate in the absence of added stimuli. Constitutive activation of phosphatidylinositol-3 kinase (PI 3-kinase), Rac, Rho and Rho kinase are essential for these processes. Ezrin and moesin are putative targets of these signaling pathways leading to spontaneous migration. To test this hypothesis, we used specific siRNA probes that resulted in a downregulation of ezrin and moesin by about 70% and in a similar reduction in the fraction of migrating cells. Spontaneous polarization however was not affected, indicating a more subtle role of ezrin and moesin in migration. We provide furthermore evidence that endogenous ezrin and moesin colocalize with F-actin at the contracted tail of polarized cells, similar to ectopically expressed green fluorescent protein-tagged ezrin. Our results suggest that myosin light chain and ezrin are markers of front and tail, respectively, even in the absence of morphological polarization. We further show that endogenous ezrin and moesin are phosphorylated and that activities of PI-3 kinase, Rho and Rac, but not of Rho-kinase, are required for this C-terminal phosphorylation. Activation of protein kinase C in contrast suppressed phosphorylation of ezrin and moesin. Inhibition of ezrin phosphorylation prevented its membrane association.