990 resultados para reduced nicotinamide adenine dinucleotide dehydrogenase


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Age-related skeletal muscle sarcopenia is linked with increases in falls, fractures, and death and therefore has important socioeconomic consequences. The molecular mechanisms controlling age-related muscle loss in humans are not well understood, but are likely to involve multiple signaling pathways. This study investigated the regulation of several genes and proteins involved in the activation of key signaling pathways promoting muscle hypertrophy, including GH/STAT5, IGF-1/Akt/GSK-3β/4E-BP1, and muscle atrophy, including TNFα/SOCS-3 and Akt/FKHR/atrogene, in muscle biopsies from 13 young (20 ± 0.2 years) and 16 older (70 ± 0.3 years) males. In the older males compared to the young subjects, muscle fiber cross-sectional area was reduced by 40–45% in the type II muscle fibers. TNFα and SOCS-3 were increased by 2.8 and 1.5 fold, respectively. Growth hormone receptor protein (GHR) and IGF-1 mRNA were decreased by 45%. Total Akt, but not phosphorylated Akt, was increased by 2.5 fold, which corresponded to a 30% reduction in the efficiency of Akt phosphorylation in the older subjects. Phosphorylated and total GSK-3β were increased by 1.5 and 1.8 fold, respectively, while 4E-BP1 levels were not changed. Nuclear FKHR and FKHRL1 were decreased by 73 and 50%, respectively, with no changes in their atrophy target genes, atrogin-1 and MuRF1. Myostatin mRNA and protein levels were significantly elevated by 2 and 1.4 fold. Human sarcopenia may be linked to a reduction in the activity or sensitivity of anabolic signaling proteins such as GHR, IGF-1, and Akt. TNFα, SOCS-3, and myostatin are potential candidates influencing this anabolic perturbation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Background:
Failure to maintain weight losses in lifestyle change programs continues to be a major problem and warrants investigation of innovative approaches to weight control.
Objective:
The goal of this study was to compare two novel group interventions, both aimed at improving weight loss maintenance, with a control group.
Methods and Procedures:
A total of 103 women lost weight on a meal replacement–supplemented diet and were then randomized to one of three conditions for the 14-week maintenance phase: cognitive-behavioral treatment (CBT); CBT with an enhanced food monitoring accuracy (EFMA) program; or these two interventions plus a reduced energy density eating (REDE) program. Assessments were conducted periodically through an 18-month postintervention. Outcome measures included weight and self-reported dietary intake. Data were analyzed using completers only as well as baseline-carried-forward imputation.
Results:
Participants lost an average of 7.6 plusminus 2.6 kg during the weight loss phase and 1.8 plusminus 2.3 kg during the maintenance phase. Results do not suggest that the EFMA intervention was successful in improving food monitoring accuracy. The REDE group decreased the energy density (ED) of their diets more so than the other two groups. However, neither the REDE nor the EFMA condition showed any advantage in weight loss maintenance. All groups regained weight between 6- and 18-month follow-ups.
Discussion:
Although no incremental weight maintenance benefit was observed in the EFMA or EFMA + REDE groups, the improvement in the ED of the REDE group's diet, if shown to be sustainable in future studies, could have weight maintenance benefits.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Studies were conducted on streams flowing through agricultural floodplains in south-eastern Australia to quantify whether reductions in riparian canopy cover were associated with alterations to the input and benthic standing stocks of coarse allochthonous detritus. Comparisons were made among three farmland reaches and three reaches within reserves with intact cover of remnant overstorey trees. Detritus inputs to these reaches were measured monthly over 2 years using litter traps. Direct inputs to streams within the reserves were relatively high (550–617 g ash free dry weight (AFDW) m–2 year–1), but were lower at farmland reaches with the lowest canopy covers (83–117 gAFDW m–2 year–1). Only a minor fraction of the total allochthonous input (<10%) entered any of the study reaches laterally. The mean amounts of benthic detritus were lowest in the most open farmland reaches. Standing stocks of benthic detritus were found to be highly patchy across a large number of agricultural streams, but were consistently very low where the streamside canopy cover was below ~35%. Canopy cover should be restored along cleared agricultural streams because allochthonous detritus is a major source of food and habitat for aquatic ecosystems. Given the absence of pristine lowland streams in south-eastern Australia, those reaches with the most intact remnant overstorey canopies should be used to guide restoration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND:The behavioral pathways through which television (TV) viewing leads to increased adiposity in adults are unclear.

OBJECTIVE:We wanted to determine whether the association between TV viewing and abdominal obesity in young adults is mediated by food and beverage consumption during TV viewing time or by a reduction in overall leisure-time physical activity (LTPA).

DESIGN:This study involved a cross-sectional analysis of data from 2001 Australian adults aged 26–36 y. Waist circumference (WC) was measured at study clinics, and TV viewing time, frequency of food and beverage consumption during TV viewing, LTPA, and demographic characteristics were self-reported.

RESULTS:Women watching TV >3 h/d had a higher prevalence of severe abdominal obesity (WC: =88 cm) compared with women watching =1 h/d [prevalence ratio (PR): 1.89; 95% CI: 1.32, 2.71]. Moderate abdominal obesity (WC: 94–101.9 cm) was more prevalent in men watching TV >3 h/d than in men watching =1 h/d (PR: 2.16; 95% CI: 1.37, 3.41). Adjustment for LTPA made little difference, but adjustment for food and beverage consumption during TV viewing attenuated the associations (PR: 1.48; 95% CI: 1.01, 2.17 for women; PR: 1.73; 95% CI: 1.06, 2.83 for men).

CONCLUSIONS:The association between TV viewing and WC in young adults may be partially explained by food and beverage consumption during TV viewing but was not explained by a reduction in overall LTPA. Other behaviors likely contribute to the association between TV viewing and obesity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Important sex differences in cardiovascular disease outcomes exist, including conditions of hypertrophic cardiomyopathy and cardiac ischemia. Studies of sex differences in the extent to which load-independent (primary) hypertrophy modulates the response to ischemia-reperfusion (I/R) damage have not been characterized. We have previously described a model of primary genetic cardiac hypertrophy, the hypertrophic heart rat (HHR). In this study the sex differences in HHR cardiac function and responses to I/R [compared to control normal heart rat (NHR)] were investigated ex vivo. The ventricular weight index was markedly increased in HHR female (7.82 ± 0.49 vs. 4.80 ± 0.10 mg/g; P < 0.05) and male (5.76 ± 0.22 vs. 4.62 ± 0.07 mg/g; P < 0.05) hearts. Female hearts of both strains exhibited a reduced basal contractility compared with strain-matched males [maximum first derivative of pressure (dP/dtmax): NHR, 4,036 ± 171 vs. 4,258 ± 152 mmHg/s; and HHR, 3,974 ± 160 vs. 4,540 ± 259 mmHg/s; P < 0.05]. HHR hearts were more susceptible to I/R (I = 25 min, and R = 30 min) injury than NHR hearts (decreased functional recovery, and increased lactate dehydrogenase efflux). Female NHR hearts exhibited a significantly greater recovery (dP/dtmax) post-I/R relative to male NHR (95.0 ± 12.2% vs. 60.5 ± 9.4%), a resistance to postischemic dysfunction not evident in female HHR (29.0 ± 5.6% vs. 25.9 ± 6.3%). Ventricular fibrillation was suppressed, and expression levels of Akt and ERK1/2 were selectively elevated in female NHR hearts. Thus the occurrence of load-independent primary cardiac hypertrophy undermines the intrinsic resistance of female hearts to I/R insult, with the observed abrogation of endogenous cardioprotective signaling pathways consistent with a potential mechanistic role in this loss of protection.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cooperative breeding systems are characterized by nonbreeding helpers that assist breeders in offspring care. However, the benefits to offspring of being fed by parents and helpers in cooperatively breeding birds can be difficult to detect. We offer experimental evidence that helper effects can be obscured by an undocumented maternal tactic. In superb fairy-wrens (Malurus cyaneus), mothers breeding in the presence of helpers lay smaller eggs of lower nutritional content that produce lighter chicks, as compared with those laying eggs in the absence of helpers. Helpers compensate fully for such reductions in investment and allow mothers to benefit through increased survival to the next breeding season. We suggest that failure to consider maternal egg-investment strategies can lead to underestimation of the force of selection acting on helping in avian cooperative breeders.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have determined the structure of the reduced form of the DsbA oxidoreductase from Vibrio cholerae. The reduced structure shows a high level of similarity to the crystal structure of the oxidized form and is typical of this class of enzyme containing a thioredoxin domain with an inserted α-helical domain. Proteolytic and thermal stability measurements show that the reduced form of DsbA is considerably more stable than the oxidized form. NMR relaxation data have been collected and analyzed using a model-free approach to probe the dynamics of the reduced and oxidized states of DsbA. Akaike's information criteria have been applied both in the selection of the model-free models and the diffusion tensors that describe the global motions of each redox form. Analysis of the dynamics reveals that the oxidized protein shows increased disorder on the pico- to nanosecond and micro- to millisecond timescale. Many significant changes in dynamics are located either close to the active site or at the insertion points between the domains. In addition, analysis of the diffusion data shows there is a clear difference in the degree of interdomain movement between oxidized and reduced DsbA with the oxidized form being the more rigid. Principal components analysis has been employed to indicate possible concerted movements in the DsbA structure, which suggests that the modeled interdomain motions affect the catalytic cleft of the enzyme. Taken together, these data provide compelling evidence of a role for dynamics in the catalytic cycle of DsbA.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The purpose of this study was to determine whether nitric oxide synthase (NOS) inhibition decreased basal and exercise-induced skeletal muscle mitochondrial biogenesis. Male Sprague-Dawley rats were assigned to one of four treatment groups: NOS inhibitor NG-nitro-L-arginine methyl ester (L-NAME, ingested for 2 days in drinking water, 1 mg/ml) followed by acute exercise, no L-NAME ingestion and acute exercise, rest plus L-NAME, and rest without L-NAME. The exercised rats ran on a treadmill for 53 ± 2 min and were then killed 4 h later. NOS inhibition significantly (P < 0.05; main effect) decreased basal peroxisome proliferator-activated receptor-{gamma} coactivator 1beta (PGC-1beta) mRNA levels and tended (P = 0.08) to decrease mtTFA mRNA levels in the soleus, but not the extensor digitorum longus (EDL) muscle. This coincided with significantly reduced basal levels of cytochrome c oxidase (COX) I and COX IV mRNA, COX IV protein and COX enzyme activity following NOS inhibition in the soleus, but not the EDL muscle. NOS inhibition had no effect on citrate synthase or beta-hydroxyacyl CoA dehydrogenase activity, or cytochrome c protein abundance in the soleus or EDL. NOS inhibition did not reduce the exercise-induced increase in peroxisome proliferator-activated receptor-{gamma} coactivator 1{alpha} (PGC-1{alpha}) mRNA in the soleus or EDL. In conclusion, inhibition of NOS appears to decrease some aspects of the mitochondrial respiratory chain in the soleus under basal conditions, but does not attenuate exercise-induced mitochondrial biogenesis in the soleus or in the EDL.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An extracellular limonoate dehydrogenase was purified 10-fold from a cell-free extract of Rhodococcus fascians by ammonium sulfate precipitation, dialysis, and ultrafiltration. This purified dehydrogenase catalyzed the
conversion of limonoate to 17-dehydrolimonoate. The enzyme showed optimum activity at pH 8.0 and 40oC, with Km value of 0.9 µM, and requires Zn ions and sulfhydryl groups for catalytic action. The enzyme activity was inhibited by Hg2+ and NaN3 ions. The degradation of limonin (66%) in Kinnow mandarin juice was successfully demonstrated with partially
purified limonoate dehydrogenase. With scale-up preparation of limonoate dehydrogenase, a successful debittering operation of fruit juices appears feasible.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Aim: To investigate the effects of globular adiponectin (gAd) on gene expression and whether these effects are mediated through 3',5'-cyclic monophosphate-activated protein kinase in skeletal muscle myotubes obtained from lean, obese and obese diabetic individuals.

Methods: Rectus abdominus muscle biopsies were obtained from surgical patients to establish primary skeletal muscle cell cultures. Three distinct primary cell culture groups were established (lean, obese and obese diabetic; n = 7 in each group). Once differentiated, these cultures were then exposed to gAd or 5-aminoimidazole-4-carboxamide-1-β-d-ribofuranoside (AICAR) for 6 h.

Results: Stimulation with gAd decreased pyruvate dehydrogenase kinase 4 (PDK4) gene expression in the obese and diabetic samples (p ≤ 0.05) and increased cytochrome c oxidase (COX) subunit 4 (COXIV) gene expression in the myotubes derived from lean individuals only (p < 0.05). AICAR treatment also decreased PDK4 gene expression in the obese- and diabetic-derived myotubes (p ≤ 0.05) and increased the gene expression of the mitochondrial gene, COXIII, in the lean-derived samples only (p < 0.05).

Conclusions: This study demonstrated distinct disparity between myotubes derived from lean compared with obese and obese diabetic individuals following gAd and AICAR treatment. Further understanding of the regulation of PDK4 in obese and diabetic skeletal muscle and its interaction with adiponectin signalling is required as this appears to be an important early molecular event in these disease states that may improve blood glucose control and metabolic flux.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Recovery after prolonged or high-intensity exercise is characterised by a substantial increase in adipose tissue lipolysis, resulting in elevated rates of plasma-derived fat oxidation. Despite the large increase in circulating fatty acids (FAs) after exercise, only a small fraction of this is taken up by exercised muscle in the lower extremities. Indeed, the predominant fate of non-oxidised FAs derived from post-exercise lipolysis is reesteriflcation hi the liver. During recovery from endurance exercise, a number of changes also occur hi skeletal muscle that allow for a high metabolic priority towards glycogen resynthesis. Reducing muscle glycogen during exercise potentiates these effects, however the cellular and molecular mechanisms regulating substrate oxidation following exercise remain poorly defined. The broad arm of this thesis was to examine the regulation of fat metabolism during recovery from glycogen-lowering exercise hi the presence of altered fat and glucose availability. In study I, eight endurance-trained males completed a bout of exhaustive exercise followed by ingestion of carbohydrate (CHO)-rich meals (64-70% of energy from CHO) at 1, 4, and 7 h of recovery. Duplicate muscle biopsies were obtained at exhaustion and 3, 6 and 18 h of recovery. Despite the large intake of CHO during recovery (491 ± 28 g or 6.8 + 0.3 g • kg-1), respiratory exchange ratio values of 0.77 to 0.84 indicated a greater reliance on fat as an oxidative fuel. Intramuscular triacylglycerol (IMTG) content remained unchanged in the presence of elevated glucose and insulin levels during recovery , suggesting IMTG has a negligible role in contributing to the enhanced fat oxidation after exhaustive exercise. It appears that the partitioning of exogenous glucose towards glycogen resynthesis is of high metabolic priority during immediate post-exercise recovery, supported by the trend towards reduced pyruvate dehydrogenase (PDH) activity and increased fat oxidation. The effect of altering plasma FA availability during post-exercise recovery was examined in study II. Eight endurance-trained males performed three trials consisting of glycogen-lowering exercise, followed by infusion of either saline (CON), saline + nicotinic acid (NA) (LFA) or Intralipid and heparin (HFA). Muscle biopsies were obtained at the end of exercise (0 h) and at 3 and 6 h in recovery. Altering the availability of plasma FAs during recovery induced changes in whole-body fat oxidation that were unrelated to differences in skeletal muscle malonyl-CoA. Furthermore, fat oxidation and acetyl-CoA carboxylase (ACC) phosphorylation appear to be dissociated after exercise, suggesting mechanisms other than phosphorylation-mediated changes in ACC activity have an important role in regulating malonyl-CoA and fat metabolism in human skeletal muscle after exercise. Alternative mechanisms include citrate and long-chain fatty acyl-CoA mediated changes in ACC activity, or differences in malonyl-CoA decarboxylase (MCD) activity. Reducing plasma FA concentrations with NA attenuated the post-exercise increase in MCD and pyruvate dehydrogenase kinase 4 (PDK4) gene expression, suggesting that FAs and/or other factors induced by NA are involved hi the regulation of these genes. Despite marked changes hi plasma FA availability, no significant changes in IMTG concentration were detected, providing further evidence that plasma-derived FAs are the preferential fuel source contributing to the enhanced fat oxidation post-exercise during recovery. To further examine the effect of substrate availability after exercise, Study III investigated the regulation of fat metabolism during a 6 h recovery period with or without glucose infusion. Enhanced glucose availability significantly increased CHO oxidation compared with the fasted state, although no differences in whole-body fat oxidation were apparent. Consistent with the similar rates of fat metabolism, no difference hi AMPK or ACCβ phosphorylation were observed between trials. In addition, no significant treatment or time effects for IMTG concentration were detected during recovery. The large exercise-induced PDK4 gene expression was attenuated when plasma FAs were reduced during glucose infusion, supporting the hypothesis that PDK4 is responsive to sustained changes in lipid availability and/or changes in plasma insulin. Furthermore, the possibility exists that the suppression of PDK4 mRNA also reduced PDK activity and thus maintained PDH activity to account for the higher rates of CHO oxidation observed during glucose infusion compared with the control trial.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glycogen availability can influence glucose transporter 4 (GLUT4) expression in skeletal muscle through unknown mechanisms. The multisubstrate enzyme AMP-activated protein kinase (AMPK) has also been shown to play an important role in the regulation of GLUT4 expression in skeletal muscle. During contraction, AMPK [alpha]2 translocates to the nucleus and the activity of this AMPK isoform is enhanced when skeletal muscle glycogen is low. In this study, we investigated if decreased pre-exercise muscle glycogen levels and increased AMPK [alpha]2 activity reduced the association of AMPK with glycogen and increased AMPK [alpha]2 translocation to the nucleus and GLUT4 mRNA expression following exercise. Seven males performed 60 min of exercise at ~70% [VO.sub.2] peak on 2 occasions: either with normal (control) or low (LG) carbohydrate pre-exercise muscle glycogen content. Muscle samples were obtained by needle biopsy before and after exercise. Low muscle glycogen was associated with elevated AMPK [alpha]2 activity and acetyl-CoA carboxylase [beta] phosphorylation, increased translocation of AMPK [alpha]2 to the nucleus, and increased GLUT4 mRNA. Transfection of primary human myotubes with a constitutively active AMPK adenovirus also stimulated GLUT4 mRNA, providing direct evidence of a role of AMPK in regulating GLUT4 expression. We suggest that increased activation of AMPK [alpha]2 under conditions of low muscle glycogen enhances AMPK [alpha]2 nuclear translocation and increases GLUT4 mRNA expression in response to exercise in human skeletal muscle.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Low-volume ‘sprint’ interval training (SIT) stimulates rapid improvements in muscle oxidative capacity that are comparable to levels reached following traditional endurance training (ET) but no study has examined metabolic adaptations during exercise after these different training strategies. We hypothesized that SIT and ET would induce similar adaptations in markers of skeletal muscle carbohydrate (CHO) and lipid metabolism and metabolic control during exercise despite large differences in training volume and time commitment. Active but untrained subjects (23 ± 1 years) performed a constant-load cycling challenge (1 h at 65% of peak oxygen uptake before and after 6 weeks of either SIT or ET (n = 5 men and 5 women per group). SIT consisted of four to six repeats of a 30 s ‘all out’ Wingate Test (mean power output ∼500 W) with 4.5 min recovery between repeats, 3 days per week. ET consisted of 40–60 min of continuous cycling at a workload that elicited ∼65% (mean power output ∼150 W) per day, 5 days per week. Weekly time commitment (∼1.5 versus ∼4.5 h) and total training volume (∼225 versus ∼2250 kJ week−1) were substantially lower in SIT versus ET. Despite these differences, both protocols induced similar increases (P < 0.05) in mitochondrial markers for skeletal muscle CHO (pyruvate dehydrogenase E1α protein content) and lipid oxidation (3-hydroxyacyl CoA dehydrogenase maximal activity) and protein content of peroxisome proliferator-activated receptor-γ coactivator-1α. Glycogen and phosphocreatine utilization during exercise were reduced after training, and calculated rates of whole-body CHO and lipid oxidation were decreased and increased, respectively, with no differences between groups (all main effects, P < 0.05). Given the markedly lower training volume in the SIT group, these data suggest that high-intensity interval training is a time-efficient strategy to increase skeletal muscle oxidative capacity and induce specific metabolic adaptations during exercise that are comparable to traditional ET.