999 resultados para recycled polymer
Resumo:
A newly developed polymer coil shrinking theory is described and compared with the existing entangled solution theory to explain electrophoretic migration behaviour of DNA in hydroxypropylmethylcellulose (HPMC) polymer solution in buffer containing 100 mM tris(hydroxymethyl)aminomethane 100 mM boric acid, 2 mm ethylenediaminetetraacetic acid at pH 8.3. The polymer coil shrinking theory gave a better model to explain the results obtained. The polymer coil shrinking concentration, C-s, was found to be 0.305% and the uniform entangled concentration, C+, 0.806%. The existence of three regions (the dilute, semidilute, and concentrated solution) at different polymer concentrations enables a better understanding of the system to guide the selection of the best conditions to separate DNA fragments. For separating large fragments (700/800 bp), dilute solutions (HPMC < 0.3%) should be used to achieve a short migration time (10 min). For small fragments (200/300 bp), concentrated solutions are preferred to obtain constant resolution and uniform separation. The best resolution is 0.6% HPMC due to a combined interaction of the polymer coils and the entangled structure. The possibility of DNA separation in semidilute solution is often neglected and the present results indicate that this region has a promising potential for analytical separation of DNA fragments.
Resumo:
A theoretical description. based on chemical kinetics and electrochemistry, is given of DNA separation in dilute polymer solution by capillary electrophoresis. A self-consistent model was developed leading to predictions of the DNA electrophoretic velocity as a function of the experimental conditions - polymer concentration, temperature, and electric field strength. The effect of selected experimental variables is discussed. The phenomena discussed are illustrated for the example of 100 bp DNA ladder separation in dilute HPMC solution by capillary electrophoresis. This model is the first single model that can fully explain the dependence of DNA electrophoretic velocity on electrophoretic conditions.
Resumo:
The polymer-supported bimetallic catalyst FVP-PdCl2-2CuCl(2) (PVP, poly(N-vinyl-2-pyrrolidone), obtained in situ by the addition of CuCl2 to an alcoholic solution of PVP-PdCl2, exhibits high selectivity and activity for the oxidative carbonylation of aniline with carbon monoxide and oxygen to ethyl N-phenylcarbamate in the presence of a base (NaOAc) under atmospheric pressure. The strong synergic effect of Pd-Cu gives rise to a clear increase in the selectivity and activity. (C) 2000 Elsevier Science B.V. All rights reserved.
Resumo:
The polymer-supported bimetallic catalyst PVP-PdCl2-MnCl2 (PVP=poly(N-vinyl-2-pyrrolidone)) exhibits high activity and selectivity for the oxidative carbonylation of amines with carbon monoxide and oxygen to carbamate esters under atmospheric pressure in the presence of a base (NaOAc). This catalyst is prepared by the addition of MnCl2 to the alcoholic solution of PVP-PdCl2 in situ. A remarkable bimetallic synergic effect and the role of PVP in PVP-PdCl2-MXn (MXn=the second transition metal component such as NiCl2, CoCl2, MnCl2 and FeCl3) gives rise to an obvious increase in the conversion and selectivity for the reaction. Among the second metal components tested, Mn-Pd exerts the strongest synergic effect. (C) 1999 Elsevier Science B.V. All rights reserved.
Resumo:
Platinum utilization in the gas-diffusion catalyst layer and thin-film catalyst layer is investigated. The morphology of PTFE and Nafion in a simulated catalyst layer is examined by scanning electronmicroscopy (SEM) and transmission electron microscopy (TEM). The results show that the platinum utilization of the thin-film catalyst layer containing only Pt/C and Nafion is 45.4%. The low utilization is attributed to the fact that the electron conduction of many catalyst particles is impaired by some thick Nafion layers or clumps. For the gas-diffusion (E-TEK) electrode, the platinum utilization is mainly affected by the proton conduction provided by Nafion. The blocking effect of PTFE on the active sites is not serious. When the electrode is sufficiently impregnated with Nafion by an immersion method, the platinum utilization can reach 77.8%. Transmission electron micrographs reveal that although some thick Nafion layers and clumps are observed in the Pt/C + Nafion layer, the distribution of Nafion in the catalyst layer is basically uniform. The melted PTFE disperses in the catalyst layer very uniformly. No large PTFE clumps or wide net-like structure is observed. The reactant gas may have to diffuse evenly in the catalyst layer. (C) 1999 Elsevier Science S.A. All rights reserved.
Resumo:
In order to make a molecule imprinting polymer (MIP) with highly chiral selectivity against N-t-Boc-L-Trp, a new kind of "cocktail" functional monomer: acrylamide+2-vinylpyridine was investigated. The MIP showed impressive chiral selectivity (alpha=3.23). With the increasing of water content in the mobile phase, ionic and hydrophobic interaction were found to be responsible for the chiral recognition process instead of the hydrogen bond. Tailing and peak asymmetry problems were overcome by using linear gradient elution. Physical properties such as thermal stability and pore structure for the MIP were also investigated.