990 resultados para predictive modeling
Resumo:
Cette thèse étudie des modèles de séquences de haute dimension basés sur des réseaux de neurones récurrents (RNN) et leur application à la musique et à la parole. Bien qu'en principe les RNN puissent représenter les dépendances à long terme et la dynamique temporelle complexe propres aux séquences d'intérêt comme la vidéo, l'audio et la langue naturelle, ceux-ci n'ont pas été utilisés à leur plein potentiel depuis leur introduction par Rumelhart et al. (1986a) en raison de la difficulté de les entraîner efficacement par descente de gradient. Récemment, l'application fructueuse de l'optimisation Hessian-free et d'autres techniques d'entraînement avancées ont entraîné la recrudescence de leur utilisation dans plusieurs systèmes de l'état de l'art. Le travail de cette thèse prend part à ce développement. L'idée centrale consiste à exploiter la flexibilité des RNN pour apprendre une description probabiliste de séquences de symboles, c'est-à-dire une information de haut niveau associée aux signaux observés, qui en retour pourra servir d'à priori pour améliorer la précision de la recherche d'information. Par exemple, en modélisant l'évolution de groupes de notes dans la musique polyphonique, d'accords dans une progression harmonique, de phonèmes dans un énoncé oral ou encore de sources individuelles dans un mélange audio, nous pouvons améliorer significativement les méthodes de transcription polyphonique, de reconnaissance d'accords, de reconnaissance de la parole et de séparation de sources audio respectivement. L'application pratique de nos modèles à ces tâches est détaillée dans les quatre derniers articles présentés dans cette thèse. Dans le premier article, nous remplaçons la couche de sortie d'un RNN par des machines de Boltzmann restreintes conditionnelles pour décrire des distributions de sortie multimodales beaucoup plus riches. Dans le deuxième article, nous évaluons et proposons des méthodes avancées pour entraîner les RNN. Dans les quatre derniers articles, nous examinons différentes façons de combiner nos modèles symboliques à des réseaux profonds et à la factorisation matricielle non-négative, notamment par des produits d'experts, des architectures entrée/sortie et des cadres génératifs généralisant les modèles de Markov cachés. Nous proposons et analysons également des méthodes d'inférence efficaces pour ces modèles, telles la recherche vorace chronologique, la recherche en faisceau à haute dimension, la recherche en faisceau élagué et la descente de gradient. Finalement, nous abordons les questions de l'étiquette biaisée, du maître imposant, du lissage temporel, de la régularisation et du pré-entraînement.
Resumo:
La présente thèse regroupe deux articles qui examinent le rôle de l’anxiété sociale sur les comportements délinquants à l’adolescence. Pour le premier article, l’apport de l’anxiété sociale sur l’émergence de comportements de délinquance générale et relationnelle parmi 191 adolescents a été évalué. Les adolescents provenaient d’écoles secondaires de la province de Québec qui participaient à l’évaluation d’une stratégie d’intervention Agir Autrement (SIAA), une stratégie de prévention du décrochage scolaire en milieu défavorisé. L’échantillon obtenu a permis d’identifier deux groupes d’adolescents présentant des caractéristiques de délinquance générale ou relationnelle pour tester le rôle prédictif de l’anxiété sociale, de l’estime de soi, de l’isolement social et de la dépression sur leur profil de délinquance. Les résultats d’une analyse linéaire discriminante ont révélé qu’au-delà des facteurs individuels et sociaux testés, l’anxiété sociale prédit les trajectoires de délinquance deux ans plus tard. Pour le deuxième article, des analyses de trajectoires à partir d’analyses par équations structurelles ont été effectuées pour expliquer les associations prospectives entre l’anxiété sociale, la dépression et l’isolement social au début de l’adolescence sur les comportements de délinquance générale et relationnelle. Les résultats ont montré que l’anxiété sociale et l’isolement social sont des prédicteurs importants dans le développement de la délinquance relationnelle, toutefois la dépression ne s’est pas avérée prédictive. Ces études contribuent à la recherche dans le domaine de l’anxiété en expliquant l’importance de poursuivre les travaux pour mieux cerner le rôle de l’anxiété sociale et de l’isolement social chez les adolescents qui commettent des actes de délinquance relationnelle.
Resumo:
Cette étude vise à examiner la relation entre les pratiques parentales utilisées durant la période de l'enfance et les dimensions principales du du trouble déficitaire de l'attention avec hyperactivité (TDAH) à l'adolescence, soit l’inattention, l’hyperactivité et l’impulsivité. Les pratiques spécifiques parentales (engagement, pratiques parentales appropriée, supervision, punitions corporelles, discipline appropriée, discipline sévère et incohérente, discipline verbale positive, félicitations et récompenses, et les attentes claires) et les aspects du fonctionnement familial (communication, résolution de problèmes, rôles dans la famille, sensibilité affective, engagement affectif, contrôle comportemental) ont été examinés par rapport à l'inattention et d'hyperactivité. Trente-six enfants de 6 à 9 ans et leurs parents ont participé à une étude longitudinale de 5 ans. Il y a un manque d'études longitudinales dans ce domaine et cette étude vise à combler cette lacune. Les résultats ne montrent pas de résultats significatifs dans la relation entre les pratiques parentales utilisées dans l'enfance et les symptômes principaux de l'hyperactivité et l'inattention à l'adolescence. Les études futures devraient se concentrer sur la relation entre la psychopathologie parentale et les principaux symptômes du TDAH de l'enfance à l'adolescence, ainsi que l'impact des pratiques parentales sur ces principaux symptômes.
Resumo:
One of the major concerns of scoliotic patients undergoing spinal correction surgery is the trunk's external appearance after the surgery. This paper presents a novel incremental approach for simulating postoperative trunk shape in scoliosis surgery. Preoperative and postoperative trunk shapes data were obtained using three-dimensional medical imaging techniques for seven patients with adolescent idiopathic scoliosis. Results of qualitative and quantitative evaluations, based on the comparison of the simulated and actual postoperative trunk surfaces, showed an adequate accuracy of the method. Our approach provides a candidate simulation tool to be used in a clinical environment for the surgery planning process.
Resumo:
This study focuses on the onset of southwest monsoon over Kerala. India Meteorological Department (IMD) has been using a semi-objective method to define monsoon onset. The main objectives of the study are to understand the monsoon onset processes, to simulate monsoon onset in a GCM using as input the atmospheric conditions and Sea Surface Temperature, 10 days earlier to the onset, to develop a method for medium range prediction of the date of onset of southwest monsoon over Kerala and to examine the possibility of objectively defining the date of Monsoon Onset over Kerala (MOK). It gives a broad description of regional monsoon systems and monsoon onsets over Asia and Australia. Asian monsoon includes two separate subsystems, Indain monsoon and East Asian monsoon. It is seen from this study that the duration of the different phases of the onset process are dependent on the period of ISO. Based on the study of the monsoon onset process, modeling studies can be done for better understanding of the ocean-atmosphere interaction especially those associated with the warm pool in the Bay of Bengal and the Arabian Sea.
Resumo:
It is proposed to study the suspended sediment transport characteristics of river basins of Kerala and to model suspended sediment discharge mechanism for typical micro-watersheds. The Pamba river basin is selected as a representative hydrologic regime for detailed studies of suspended sediment characteristics and its seasonal variation. The applicability of various erosion models would be tested by comparing with the observed event data (by continuous monitoring of rainfall, discharge, and suspended sediment concentration for lower order streams). Empirical, conceptual and physically distributed models were used for making the comparison of performance of the models. Large variations in the discharge and sediment quantities were noticed during a particular year between the river basins investigated and for an individual river basin during the years for which the data was available. In general, the sediment yield pattern follows the seasonal distribution of rainfall, discharge and physiography of the land. This confirms with similar studies made for other Indian rivers. It was observed from this study, that the quantity of sediment transported downstream shows a decreasing trend over the years corresponding to increase in discharge. For sound and sustainable management of coastal zones, it is important to understand the balance between erosion and retention and to quantify the exact amount of the sediments reaching this eco-system. This, of course, necessitates a good length of time series data and more focused research on the behaviour of each river system, both present and past. In this realm of river inputs to ocean system, each of the 41 rivers of Kerala may have dominant yet diversified roles to influence the coastal ecosystem as reflected from this study on the major fraction of transport, namely the suspended sediments
Resumo:
In the twentieth century, as technology grew with it. This resulted in collective efforts and thinking in the direction of controlling work related hazards and accidents. Thus, safety management developed and became an important part of industrial management. While considerable research has been reported on the topic of safety management in industries from various parts of the world, there is scarcity of literature from India. It is logical to think that a clear understanding of the critical safety management practices and their relationships with accident rates and management system certifications would help in the development and implementation of safety management systems. In the first phase of research, a set of six critical safety management practices has been identified based on a thorough review of the prescriptive, practitioner, conceptual and empirical literature. An instrument for measuring the level of practice of these safety conduction a survey using questionnaire in chemical/process industry. The instrument has been empirically validated using Confirmatory Factor Analysis (CFA) approach. As the second step. Predictive validity of safety management practices and the relationship between safety management practices and self-reported accident rates and management system certifications have been investigated using ANOVA. Results of the ANOVA tests show that there is significant difference in the identified safety management practices and the determinants of safety performance have been investigated using Multiple Regression Analysis. The inter-relationships between safety management practices, determinants of safety performance and components of safety performance have been investigated with the help of structural equation modeling. Further investigations into engineering and construction industries reveal that safety climate factors are not stable across industries. However, some factors are found to be common in industries irrespective of the type of industry. This study identifies the critical safety management practices in major accident hazard chemical/process industry from the perspective of employees and the findings empirically support the necessity for obtaining safety specific management system certifications
Resumo:
In this Letter a new physical model for metal-insulatormetal CMOS capacitors is presented. In the model the parameters of the circuit are derived from the physical structural details. Physical behaviors due to metal skin effect and inductance have been considered. The model has been confirmed by 3D EM simulator and design rules proposed. The model presented is scalable with capacitor geometry, allowing designers to predict and optimize quality factor. The approach has been verified for MIM CMOS capacitors
Resumo:
During 1990's the Wavelet Transform emerged as an important signal processing tool with potential applications in time-frequency analysis and non-stationary signal processing.Wavelets have gained popularity in broad range of disciplines like signal/image compression, medical diagnostics, boundary value problems, geophysical signal processing, statistical signal processing,pattern recognition,underwater acoustics etc.In 1993, G. Evangelista introduced the Pitch- synchronous Wavelet Transform, which is particularly suited for pseudo-periodic signal processing.The work presented in this thesis mainly concentrates on two interrelated topics in signal processing,viz. the Wavelet Transform based signal compression and the computation of Discrete Wavelet Transform. A new compression scheme is described in which the Pitch-Synchronous Wavelet Transform technique is combined with the popular linear Predictive Coding method for pseudo-periodic signal processing. Subsequently,A novel Parallel Multiple Subsequence structure is presented for the efficient computation of Wavelet Transform. Case studies also presented to highlight the potential applications.
Resumo:
Department of Statistics, Cochin University of Science and Technology
Resumo:
The thesis has covered various aspects of modeling and analysis of finite mean time series with symmetric stable distributed innovations. Time series analysis based on Box and Jenkins methods are the most popular approaches where the models are linear and errors are Gaussian. We highlighted the limitations of classical time series analysis tools and explored some generalized tools and organized the approach parallel to the classical set up. In the present thesis we mainly studied the estimation and prediction of signal plus noise model. Here we assumed the signal and noise follow some models with symmetric stable innovations.We start the thesis with some motivating examples and application areas of alpha stable time series models. Classical time series analysis and corresponding theories based on finite variance models are extensively discussed in second chapter. We also surveyed the existing theories and methods correspond to infinite variance models in the same chapter. We present a linear filtering method for computing the filter weights assigned to the observation for estimating unobserved signal under general noisy environment in third chapter. Here we consider both the signal and the noise as stationary processes with infinite variance innovations. We derived semi infinite, double infinite and asymmetric signal extraction filters based on minimum dispersion criteria. Finite length filters based on Kalman-Levy filters are developed and identified the pattern of the filter weights. Simulation studies show that the proposed methods are competent enough in signal extraction for processes with infinite variance.Parameter estimation of autoregressive signals observed in a symmetric stable noise environment is discussed in fourth chapter. Here we used higher order Yule-Walker type estimation using auto-covariation function and exemplify the methods by simulation and application to Sea surface temperature data. We increased the number of Yule-Walker equations and proposed a ordinary least square estimate to the autoregressive parameters. Singularity problem of the auto-covariation matrix is addressed and derived a modified version of the Generalized Yule-Walker method using singular value decomposition.In fifth chapter of the thesis we introduced partial covariation function as a tool for stable time series analysis where covariance or partial covariance is ill defined. Asymptotic results of the partial auto-covariation is studied and its application in model identification of stable auto-regressive models are discussed. We generalize the Durbin-Levinson algorithm to include infinite variance models in terms of partial auto-covariation function and introduce a new information criteria for consistent order estimation of stable autoregressive model.In chapter six we explore the application of the techniques discussed in the previous chapter in signal processing. Frequency estimation of sinusoidal signal observed in symmetric stable noisy environment is discussed in this context. Here we introduced a parametric spectrum analysis and frequency estimate using power transfer function. Estimate of the power transfer function is obtained using the modified generalized Yule-Walker approach. Another important problem in statistical signal processing is to identify the number of sinusoidal components in an observed signal. We used a modified version of the proposed information criteria for this purpose.
Resumo:
National Centre for Aquatic Animal Health, Cochin University of Science and Technology
Tropical Mesoscale Convective Systems and Associated Energetics : Observational and Modeling Studies
Resumo:
The main purpose of the thesis is to improve the state of knowledge and understanding of the physical structure of the TMCS and its short range prediction. The present study principally addresses the fine structure, dynamics and microphysics of severe convective storms.The structure and dynamics of the Tropical cloud clusters over Indian region is not well understood. The observational cases discussed in the thesis are limited to the temperature and humidity observations. We propose a mesoscale observational network along with all the available Doppler radars and other conventional and non—conventional observations. Simultaneous observations with DWR, VHF and UHF radars of the same cloud system will provide new insight into the dynamics and microphysics of the clouds. More cases have to be studied in detail to obtain climatology of the storm type passing over tropical Indian region. These observational data sets provide wide variety of information to be assimilated to the mesoscale data assimilation system and can be used to force CSRM.The gravity wave generation and stratosphere troposphere exchange (STE) processes associated with convection gained a great deal of attention to modem science and meteorologist. Round the clock observations using VHF and UHF radars along with supplementary data sets like DWR, satellite, GPS/Radiosondes, meteorological rockets and aircrafl observations is needed to explore the role of convection and associated energetics in detail.
Resumo:
ic first-order transition line ending in a critical point. This critical point is responsible for the existence of large premartensitic fluctuations which manifest as broad peaks in the specific heat, not always associated with a true phase transition. The main conclusion is that premartensitic effects result from the interplay between the softness of the anomalous phonon driving the modulation and the magnetoelastic coupling. In particular, the premartensitic transition occurs when such coupling is strong enough to freeze the involved mode phonon. The implication of the results in relation to the available experimental data is discussed.
Resumo:
Using a Ginzburg-Landau model for the magnetic degrees of freedom with coupling to disorder, we demonstrate through simulations the existence of stripelike magnetic precursors recently observed in Co-Ni-Al alloys above the Curie temperature. We characterize these magnetic modulations by means of the temperature dependence of local magnetization distribution, magnetized volume fraction, and magnetic susceptibility. We also obtain a temperature-disorder strength phase diagram in which a magnetic tweed phase exists in a small region between the paramagnetic and dipolar phases.