979 resultados para pragas de solo
Resumo:
The crop of soursop has been known for presenting great potential for the domestic market and good prospects for export. In this context, an experiment was conducted in the municipality of Remigio in the state of Paraiba, in order to evaluate the effects of irrigation depths applied weekly on the productive behavior and postharvest quality of fruits of soursop 'Morada' in the soil with and without mulching with crop residues. Treatments were arranged in randomized blocks with three replications and three plants per plot, using a factorial arrangement 5×2, referring to the soil with and without mulching with crop residues, and five irrigation depths of 0, 4.3, 8.6, 12.9 and 17.2 mm plant1. Irrigation was performed manually, once a week from September 2008 to March 2009. The presence of mulch on the soil and increasing depths of irrigation elevated the values of mean mass, production per plant and yield of soursop 'Morada', and decreased the levels of soluble solids.
Resumo:
The objective of this work was to evaluate the magnetic susceptibility efficiency for estimating the support capacity of areas for vinasse application. Two hundred forty-one soil samples were collected from a 380-ha area, on which soil chemical properties, clay content, and magnetic susceptibility were determined. Vinasse requirement was calculated for each sample. Data were subjected to descriptive statistical analysis, and regression models were developed between magnetic susceptibility and the other evaluated attributes. The analysis of data spatial dependence was performed using geostatistics. Kriging maps and cross variograms were built in order to investigate the spatial correlation between soil magnetic susceptibility and studied attributes. Based on the map of vinasse requirement, on the soil classes, and on the kriging map, calculations were done for average vinasse dose and average soil support capacity, weighted by the area. Magnetic susceptibility has significant linear spatial correlation with recommended vinasse doses and soil support capacity for the application of this effluent, and it can be used as a pedotransfer function for indirect quantification of soil support capacity.
Resumo:
Salt excess in soil and water used for irrigation can cause significant loss of production and growth in cultivated plants. Among some options for reduction of negative effects of salts to plants in cultivated areas, fermented bio fertilizer has been used to grow vegetables and fruit tree irrigated with saline water. The study aimed at evaluating the behavior of the noni plant to salinity of the irrigation water in substrate with and with no bio fertilizer. Treatments were arranged in a randomized block design with four replications, using a 5 × 2 factorial arrangement. Five levels of electrical conductivity of irrigation water (0.5, 1.5, 3.0, 4.5, 6.0 dS m-1) were used in substrates with and with no bio fertilizer. Parameters were evaluated as follows: plant height, stem diameter, number of leaves, leaf area, shoot dry matter and water consumption. All evaluated variables were negatively affected by the increase in salt concentration of the irrigation water, but always with less intense effects in treatments with bio fertilizer.The bio fertilizer does not eliminate, but mitigates the negative effects of salts in noni plants.
Resumo:
Corn cultivation is part of crop rotation used by irrigation farmers from the southwestern region of São Paulo state, Brazil, who use no-tillage soil management as a kind of sustainable use of soil. The effect of this conservative practice on physical and hydrical properties of the soil, root development and corn crop yield compared to the conventional management was the objective of this work. The experiment was held at the Buriti-Mirim Farm, Angatuba, SP, Brazil, using an irrigated area with a center pivot system and two types of soil management: conventional and no-tillage systems. Although the no-tillage management had higher soil density and less water availability, no significant difference was found for both management systems concerning soil resistance to penetration, root development and crop yield. In both systems of soil management, 90% of roots were concentrated in the first 0-20cm of soil layer.