989 resultados para photonic band gap


Relevância:

80.00% 80.00%

Publicador:

Resumo:

MgTiO3 (MTO) thin films were prepared by the polymeric precursor method with posterior spin-coating deposition. The films were deposited on Pt(111)/Ti/SiO2/Si(100) substrates and heat treated at 350 °C for 2 h and then heat treated at 400, 450, 500, 550, 600, 650 and 700 °C for 2 h. The degree of structural order−disorder, optical properties, and morphology of the MTO thin films were investigated by X-ray diffraction (XRD), micro-Raman spectroscopy (MR), ultraviolet− visible (UV−vis) absorption spectroscopy, photoluminescence (PL) measurements, and field-emission gun scanning electron microscopy (FEG-SEM) to investigate the morphology. XRD revealed that an increase in the annealing temperature resulted in a structural organization of MTO thin films. First-principles quantum mechanical calculations based on density functional theory (B3LYP level) were employed to study the electronic structure of ordered and disordered asymmetric models. The electronic properties were analyzed, and the relevance of the present theoretical and experimental results was discussed in the light of PL behavior. The presence of localized electronic levels and a charge gradient in the band gap due to a break in the symmetry are responsible for the PL in disordered MTO lattice.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

A shift of the photoluminescence (PL) emission was observed in ZnS prepared by microwave assisted solvothermal method with the increase of the time in microwave. In this work we reported a study of the optical behavior linking with the structural disorder according to XRD and FEG-TEM results. The reduction of intrinsic defects in the lattice is responsible for the decrease of electronic levels in the band gap changing the PL profile. This effect was confirmed by electronic structure calculations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this work, we report on the synthesis of MgMoO4 crystals by oxide mixed method. The powder was calcined at 1100 degrees C for 4h and analyzed by X-ray diffraction (XRD), Fourier transform infrared (FT-IR), Field emission gun scanning electron microscopy (FEG-SEM), Ultraviolet-visible (UV-vis) absorption spectroscopy and Photoluminescence (PL) measurement. XRD analyses revealed that the MgMoO4 powders crystallize in a monoclinic structure and are free secondary phases. UV-vis technique was employed to determine the optical band gap of this material. MgMoO4 crystals exhibit an intense PL emission at room temperature with maximum peak at 579 nm (yellow region) when excited by 350 nm wavelength at room temperature.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fundação Amparo à Pesquisa Estado de São Paulo (FAPESP)

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The electronic and structural properties and elastic constants of the wurtzite phase of GaN, was investigated by computer simulation at Density Functional Theory level, with B3LYP and B3PW hybrid functional. The electronic properties were investigated through the analysis of the band structures and density of states, and the mechanical properties were studied through the calculus of the elastic constants: C11, C33, C44, C12, and C13. The results show that the maximum of the valence band and the minimum of the conduction band are both located at the Γ point, indicating that GaN is a direct band gap semiconductor. The following constants were obtained for B3LYP and B3PW (in brackets): C11 = 366.9 [372.4], C33 = 390.9 [393.4], C44 = 99.1 [96.9], C12 = 143.6 [155.2], and C13 = 107.6 [121.4].

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Pós-graduação em Ciência e Tecnologia de Materiais - FC