992 resultados para organophasphate-induced delayed neuropathy


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We have examined the effects of two agents depleting the intracellular pool of glutathione (GSH) on macrophage activation induced by IFN-gamma + LPS, as measured by nitrite production and leishmanicidal activity. Diethylmaleate (DEM), which depletes intracellular GSH by conjugation via a reaction catalyzed by the GSH-S-transferase, strongly inhibited nitrite secretion and leishmanicidal activity when added before or at the time of addition of IFN-gamma + LPS; this inhibition was progressively lost when addition of DEM was delayed up to 10 hr. A close correlation was observed between levels of intracellular soluble GSH during activation and nitrite secretion. Inhibition was partially reversed by the addition of glutathione ethyl ester (GSH-Et). Buthionine sulfoximine (BSO), a specific inhibitor of gamma-glutamylcysteine synthetase, also inhibited macrophage activation, although to a lesser extent than DEM despite a more pronounced soluble GSH depletion. This inhibition was completely reversed by the addition of GSH-Et. DEM and BSO did not alter cell viability or PMA-triggered O2- production by activated macrophages, suggesting that the inhibitory effects observed on nitrite secretion and leishmanicidal activity were not related to a general impairment of macrophage function. DEM and BSO treatment reduced iNOS specific activity and iNOS protein in cytosolic extracts. DEM also decreased iNOS mRNA expression while BSO had no effect. Although commonly used as a GSH-depleting agent, DEM may have additional effects because it can also act as a sulhydryl reagent; BSO, on the other hand, which depletes GSH by enzymatic inhibition, has no effect on protein-bound GSH. Our results suggest that both soluble and protein-bound GSH may be important for the induction of NO synthase in IFN-gamma + LPS-activated macrophages.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transcriptional repressor RE1 silencer transcription factor (REST) is an important factor that restricts some neuronal traits to neurons. Since these traits are also present in pancreatic beta-cells, we evaluated their role by generating a model of insulin-secreting cells that express REST. The presence of REST led to a decrease in expression of its known target genes, whereas insulin expression and its cellular content were conserved. As a consequence of REST expression, the capacity to secrete insulin in response to mitochondrial fuels, a particularity of mature beta-cells, was impaired. These data provide evidence that REST target genes are required for an appropriate glucose-induced insulin secretion.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Chronic neuropathy after hernia repair is a neglected problem as very few patients are referred for surgical treatment. The aim of the present study was to assess the outcome of standardized surgical revision for neuropathic pain after hernia repair. METHODS: In a prospective cohort study we evaluated all patients admitted to our tertiary referral center for surgical treatment of persistent neuropathic pain after primary herniorrhaphy between 2001 and 2006. Diagnosis of neuropathic pain was based on clinical findings and a positive Tinel's sign. Postoperative pain was evaluated by a visual analogue scale (VAS) and a pain questionnaire up to 12 months after revision surgery. RESULTS: Forty-three consecutive patients (39 male, median age 35 years) underwent surgical revision, mesh removal, and radical neurectomy. The median operative time was 58 min (range: 45-95 min). Histological examination revealed nerve entrapment, complete transection, or traumatic neuroma in all patients. The ilioinguinal nerve was affected in 35 patients (81%); the iliohypogastric nerve, in 10 patients (23%). Overall pain (median VAS) decreased permanently after surgery within a follow-up period of 12 months (preoperative 74 [range: 53-87] months versus 0 [range: 0-34] months; p<0.0001). CONCLUSIONS: The results of this cohort study suggest that surgical mesh removal with ilioinguinal and iliohypogastric neurectomy is a successful treatment in patients with neuropathic pain after hernia repair.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Notch proteins are cell surface receptors that mediate developmental cell specification events. To explore the function of murine Notch1, an essential portion of the gene was flanked with loxP sites and inactivation induced via interferon-regulated Cre recombinase. Mice with a neonatally induced loss of Notch1 function were transiently growth retarded and had a severe deficiency in thymocyte development. Competitive repopulation of lethally irradiated wild-type hosts with wild-type- and Notch1-deficient bone marrow revealed a cell autonomous blockage in T cell development at an early stage, before expression of T cell lineage markers. Notch1-deficient bone marrow did, however, contribute normally to all other hematopoietic lineages. These findings suggest that Notch1 plays an obligatory and selective role in T cell lineage induction.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

BACKGROUND: Food allergy is a common allergic disorder--especially in early childhood. The avoidance of the allergenic food is the only available method to prevent further reactions in sensitized patients. A better understanding of the immunologic mechanisms involved in this reaction would help to develop therapeutic approaches applicable to the prevention of food allergy. OBJECTIVE: To establish a multi-cell in vitro model of sensitized intestinal epithelium that mimics the intestinal epithelial barrier to study the capacity of probiotic microorganisms to modulate permeability, translocation and immunoreactivity of ovalbumin (OVA) used as a model antigen. METHODS: Polarized Caco-2 cell monolayers were conditioned by basolateral basophils and used to examine apical to basolateral transport of OVA by ELISA. Activation of basophils with translocated OVA was measured by beta-hexosaminidase release assay. This experimental setting was used to assess how microorganisms added apically affected these parameters. Basolateral secretion of cytokine/chemokines by polarized Caco-2 cell monolayers was analysed by ELISA. RESULTS: Basophils loaded with OVA-specific IgE responded to OVA in a dose-dependent manner. OVA transported across polarized Caco-2 cell monolayers was found to trigger basolateral basophil activation. Microorganisms including lactobacilli and Escherichia coli increased transepithelial electrical resistance while promoting OVA passage capable to trigger basophil activation. Non-inflammatory levels of IL-8 and thymic stromal lymphopoietin were produced basolaterally by Caco-2 cells exposed to microorganisms. CONCLUSION: The complex model designed in here is adequate to learn about the consequence of the interaction between microorganisms and epithelial cells vis-a-vis the barrier function and antigen translocation, two parameters essential to mucosal homeostasis. It can further serve as a direct tool to search for microorganisms with anti-allergic and anti-inflammatory properties.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE: To investigate the involvement of the nuclear factor (NF)-kappaB in the interleukin (IL)-1 beta-mediated macrophage migration inhibitory factor (MIF) gene activation. DESIGN: Prospective study. SETTING: Human reproduction research laboratory. PATIENT(S): Nine women with endometriotic lesions. INTERVENTION(S): Endometriotic lesions were obtained during laparoscopic surgery. MAIN OUTCOME MEASURE(S): The MIF protein secretion was analyzed by ELISA, MIF mRNA expression by quantitative real-time polymerase chain reaction (PCR), NF-kappaB translocation into the nucleus by electrophoresis mobility shift assay, I kappaB phosphorylation and degradation by Western blot, and human MIF promoter activity by transient cell transfection. RESULT(S): This study showed a significant dose-dependent increase of MIF protein secretion and mRNA expression, the NF-kappaB translocation into the nucleus, I kappaB phosphorylation, I kappaB degradation, and human MIF promoter activity in endometriotic stromal cells in response to IL-1 beta. Curcumin (NF-kappaB inhibitor) significantly inhibited all these IL-1 beta-mediated effects. Analysis of the activity of deletion constructs of the human MIF promoter and a computer search localized two putative regulatory elements corresponding to NF-kappaB binding sites at positions -2538/-2528 bp and -1389/-1380 bp. CONCLUSION(S): This study suggests the involvement of the nuclear transcription factor NF-kappaB in MIF gene activation in ectopic endometrial cells in response to IL-1 beta and identifies a possible pathway of endometriosis-associated inflammation and ectopic cell growth.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Retinoid-X-receptor alpha (RXRalpha), a member of the nuclear receptor (NR) superfamily, is a ligand-dependent transcriptional regulatory factor. It plays a crucial role in NR signalling through heterodimerization with some 15 NRs. We investigated the role of RXRalpha and its partners on mouse skin tumor formation and malignant progression upon topical DMBA/TPA treatment. In mutants selectively ablated for RXRalpha in keratinocytes, epidermal tumors increased in size and number, and frequently progressed to carcinomas. As keratinocyte-selective peroxisome proliferator-activated receptor gamma (PPARgamma) ablation had similar effects, RXRalpha/PPARgamma heterodimers most probably mediate epidermal tumor suppression. Keratinocyte-selective RXRalpha-null and vitamin-D-receptor null mice also exhibited more numerous dermal melanocytic growths (nevi) than control mice, but only nevi from RXRalpha mutant mice progressed to invasive human-melanoma-like tumors. Distinct RXRalpha-mediated molecular events appear therefore to be involved, in keratinocytes, in cell-autonomous suppression of epidermal tumorigenesis and malignant progression, and in non-cell-autonomous suppression of nevi formation and progression. Our study emphasizes the crucial role of keratinocytes in chemically induced epidermal and melanocytic tumorigenesis, and raises the possibility that they could play a similar role in UV-induced tumorigenesis, notably in nevi formation and progression to melanoma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glucose-induced thermogenesis was studied in 12 overweight patients (9F and 3M) before (mean body weight +/- s.e.m. 83 +/- 2 kg) and after weight loss (68 +/- 2 kg), and in eight of the same patients following relapse of body weight gain (84 +/- 5 kg). Expressed as a percentage of the energy content of the 100 g oral glucose load, glucose-induced thermogenesis was lower in the overweight before weight loss (6.5 +/- 0.5 per cent, P less than 0.05), after weight loss (3.9 +/- 0.6 per cent, P less than 0.01) and after weight regain (6.3 +/- 0.9 per cent, P less than 0.05) than in a group of lean control subjects, matched for sex and age (8.3 +/- 0.5 per cent). Basal energy expenditure was lower after weight reduction than before (1.16 +/- 0.04 vs 1.41 +/- 0.08 kcal/min, P less than 0.01). In the formerly overweight patients, the combined effect of a decreased basal energy expenditure and an attenuation of glucose induced thermogenesis resulted in a postprandial energy expenditure which was markedly lower than in the overweight state (P less than 0.001). Following relapse of obesity, glucose-induced thermogenesis remained attenuated compared to control subjects. These results suggest that a lowered basal energy expenditure and a reduced glucose-induced thermogenesis contribute to the positive energy balance which results in relapse of body weight gain after cessation of a hypocaloric diet.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The specific sensitization of tumor cells to the apoptotic response induced by genotoxins is a promising way of increasing the efficacy of chemotherapies. The RasGAP-derived fragment N2, while not regulating apoptosis in normal cells, potently sensitizes tumor cells to cisplatin- and other genotoxin-induced cell death. Here we show that fragment N2 in living cells is mainly located in the cytoplasm and only minimally associated with specific organelles. The cytoplasmic localization of fragment N2 was required for its cisplatin-sensitization property because targeting it to the mitochondria or the ER abrogated its ability to increase the death of tumor cells in response to cisplatin. These results indicate that fragment N2 requires a spatially constrained cellular location to exert its anti-cancer activity.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The majority of Kudoa species infect the somatic muscle of fish establishing cysts. As there is no effective method to detect infected fish without destroying them these parasited fish reach the consumer. This work was developed to determine whether this parasite contains antigenic compounds capable of provoking an immune response in laboratory animals, in order to consider the possible immunopathological effects in man by the ingestion of Kudoa infected fish. BALB/c mice were injected by the subcutaneous route with the following extracts suspended in aluminium hydroxide: group 1 (black Kudoa sp. pseudocyst extract), group 2 (white Kudoa sp. pseudocyst extract), and group 3 (non-infected hake meat extract). Specific antibody levels were measured by ELISA against homologous and heterologous antigens. The highest responses were obtained from the black Kudoa sp. pseudocyst extract (group 1).The low optic density levels detected in group 3 proved that the results obtained in groups 1 and 2 were a consequence of the parasitic extract injection. The IgG1 was the predominant subclass. IgE detected in groups 1 and 2 showed the possible allergenic nature of some of the components of the parasitic extract. High IgA levels and medium IgG2a and IgG3 levels were obtained in groups 1 and 2. Low IgG2b responses were shown. No cross-reactions between Kudoa sp. pseudocyst extracts and the non-infected hake meat extract were observed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

PURPOSE OF REVIEW: This review discusses publications highlighting current research on toxic, chemotherapy-induced peripheral neuropathies (CIPNs), and drug-induced peripheral neuropathies (DIPNs). RECENT FINDINGS: The emphasis in clinical studies is on the early detection and grading of peripheral neuropathies, whereas recent studies in animal models have given insights into molecular mechanisms, with the discovery of novel neuronal, axonal, and Schwann cell targets. Some substances trigger inflammatory changes in the peripheral nerves. Pharmacogenetic techniques are underway to identify genes that may help to predict individuals at higher risk of developing DIPNs. Several papers have been published on chemoprotectants; however, to date, this approach has not been shown effective in clinical trials. SUMMARY: Both length and nonlength-dependent neuropathies are encountered, including small-fiber involvement. The introduction of new diagnostic techniques, such as excitability studies, skin laser Doppler flowmetry, and pharmacogenetics, holds promise for early detection and to elucidate underlying mechanisms. New approaches to improve functions and quality of life in CIPN patients are discussed. Apart from developing less neurotoxic anticancer therapies, there is still hope to identify chemoprotective agents (erythropoietin and substances involved in the endocannabinoid system are promising) able to prevent or correct painful CIPNs.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Clinically, heart failure is an age-dependent pathological phenomenon and displays sex-specific characteristics. The renin-angiotensin system mediates cardiac pathology in heart failure. This study investigated the sexually dimorphic functional effects of ageing combined with angiotensin II (AngII) on cardiac muscle cell function, twitch and Ca(2+)-handling characteristics of isolated cardiomyocytes from young (~13 weeks) and aged (~87 weeks) adult wild type (WT) and AngII-transgenic (TG) mice. We hypothesised that AngII-induced contractile impairment would be exacerbated in aged female cardiomyocytes and linked to Ca(2+)-handling disturbances. AngII-induced cardiomyocyte hypertrophy was evident in young adult mice of both sexes and accentuated by age (aged adult ~21-23 % increases in cell length relative to WT). In female AngII-TG mice, ageing was associated with suppressed cardiomyocyte contractility (% shortening, maximum rate of shortening, maximum rate of relaxation). This was associated with delayed cytosolic Ca(2+) removal during twitch relaxation (Tau ~20 % increase relative to young adult female WT), and myofilament responsiveness to Ca(2+) was maintained. In contrast, aged AngII-TG male cardiomyocytes exhibited peak shortening equivalent to young TG; yet, myofilament Ca(2+) responsiveness was profoundly reduced with ageing. Increased pro-arrhythmogenic spontaneous activity was evident with age and cardiac AngII overexpression in male mice (42-55 % of myocytes) but relatively suppressed in female aged transgenic mice. Female myocytes with elevated AngII appear more susceptible to an age-related contractile deficit, whereas male AngII-TG myocytes preserve contractile function with age but exhibit desensitisation of myofilaments to Ca(2+) and a heightened vulnerability to arrhythmic activity. These findings support the contention that sex-specific therapies are required for the treatment of age-progressive heart failure.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

La majorité des organelles d'une cellule adaptent leur nombre et leur taille pendant les processus de division cellulaire, de trafic vésiculaire ou suite à des changements environnementaux par des processus de fusion et de fragmentation membranaires. Ceci est valable notamment pour le golgi, les mitochondries, les péroxisomes et les lysosomes. La vacuole est le compartiment terminal de la voie endocytaire dans la levure Saccharomyces cerevisiae\ elle correspond aux lysosomes des cellules mammifères. Suite à un choc hyperosmotique, la vacuole se fragmente en plusieurs petites vésicules. Durant ce projet, cette fragmentation a été étudiée en utilisant la technique de microscopie confocale in vivo. J'ai observé que la division de la vacuole se produit d'une façon asymétrique. La première minute après le choc osmotique, les vacuoles rétrécissent et forment des longues invaginations tubulaires. Cette phase est dépendante de la protéine Vps1, un membre de la famille des protéines apparentées à la dynamine, ainsi que d'un gradient transmembranaire de protons. Pendant les 10-15 minutes qui suivent, des vésicules se détachent dans les régions où l'on observe les invaginations pendant la phase initiale. Cette deuxième phase qui mène à la fission des nouveaux compartiments vacuolaires dépend de la production du lipide PI(3,5)P2 par la protéine Fab1. J'ai établi la suite des événements du processus de fragmentation des vacuoles et propose la possibilité d'un rôle régulateur de la protéine kinase cycline-dépendante Pho85.¦En outre, j'ai tenté d'éclaircir plus spécifiquement le rôle de Vps1 pendant la fusion et fission des vacuoles. J'ai trouvé que tous les deux processus sont dépendants de l'activité GTPase de cette protéine. De plus l'association avec la membrane vacuolaire paraît régulée par le cycle d'hydrolyse du GTP. Vps1 peut lier la membrane sans la présence d'un autre facteur protéinique, ce qui permet de conclure à une interaction directe avec des lipides de la membrane. Cette interaction est au moins partiellement effectuée par le domaine GTPase, ce qui est une nouveauté pour un membre de cette famille de protéines. Une deuxième partie de Vps1, nommée insert B, est impliquée dans la liaison à la vacuole, soit par interaction directe avec la membrane, soit par régulation du domaine GTPase. En assumant que Vps1 détienne deux régions capables de liaison aux membranes, je conclus qu'elle pourrait fonctionner comme facteur de « tethering » lors de la fusion des vacuoles.¦-¦La cellule contient plusieurs sous-unités, appelées organelles, possédant chacune une fonction spécifique. Dépendant des processus qui s'y déroulent à l'intérieur, un environnement chimique spécifique est requis. Pour maintenir ces différentes conditions, les organelles sont séparées par des membranes. Lors de la division cellulaire ou en adaptation à des changements de milieu, les organelles doivent être capables de modifier leur morphologie. Cette adaptation a souvent lieu par fusion ou division des organelles. Le même principe est valable pour la vacuole dans la levure. La vacuole est une organelle qui sert principalement au stockage des aliments et à la dégradation des différents composants cellulaires. Alors que la fusion des vacuoles est un processus déjà bien décrit, la fragmentation des vacuoles a jusqu'ici été peu étudiée. Elle peut être induit par un choc osmotique: à cause de la concentration de sel élevé dans le milieu, le cytosol de la levure perd de l'eau. Par un flux d'eau de la vacuole au cytosol, la cellule est capable d'équilibrer celui-ci. Quand la vacuole perd du volume, elle doit réadapter le rapport entre surface membranaire et volume, ce qui se fait efficacement par une fragmentation d'une grande vacuole en plusieurs petites vésicules. Comment ce processus se déroule d'un point de vue morphologique n'a pas été décrit jusqu'à présent. En analysant la fragmentation vacuolaire par microscopie, j'ai trouvé que celle-ci se déroule en deux phases. Pendant la première minute suivant le choc osmotique, les vacuoles rétrécissent et forment des longues invaginations tubulaires. Cette phase dépend de la protéine Vps1, un membre de la famille des protéines apparentées à la dynamine, ainsi que du gradient transmembranaire de protons. Ce gradient s'établit par une pompe membranaire, la V-ATPase, qui transporte des protons dans la vacuole en utilisant l'énergie libérée par hydrolyse d'ATP. Après cette phase initiale, la formation de nouvelles vésicules vacuolaires dépend de la synthèse du lipide PI(3,5)P2.¦Dans la deuxième partie de l'étude, j'ai tenté de décrire comment Vps1 lie la membrane pour effectuer un remodelage de la vacuole. Vps1 est nécessaire pour la fusion et la fragmentation des vacuoles. J'ai découvert que tous les deux processus dépendent de sa capacité d'hydrolyser du GTP. Ainsi l'association avec la membrane est couplée au cycle d'hydrolyse du GTP. Vps1 peut lier la membrane sans la présence d'une autre protéine, et interagit donc très probablement avec les lipides de la membrane. Deux parties différentes de la protéine sont impliquées dans la liaison, dont une, inattendue, le domaine GTPase.¦-¦Numerous organelles undergo membrane fission and fusion events during cell division, vesicular traffic, or in response to changes in environmental conditions. Examples include Golgi (Acharya et al., 1998) mitochondria (Bleazard et al., 1999) peroxisomes (Kuravi et al., 2006) and lysosomes (Ward et al., 1997). In the yeast Saccharomyces cerevisiae the vacuole is the terminal component of the endocytic pathway and corresponds to lysosomes in mammalian cells. Yeast vacuoles fragment into multiple small vesicles in response to a hypertonic shock. This rapid and homogeneous reaction can serve as a model to study the requirements of the fragmentation process. Here, I investigated osmotically induced fragmentation by time-lapse microscopy. I observe that the small fragmentation products originate directly from the large central vacuole by asymmetric scission rather than by consecutive equal divisions and that fragmentation occurs in two distinct phases. During the first minute, vacuoles shrink and generate deep invaginations, leaving behind tubular structures. This phase requires the dynamin-like GTPase Vps1 and the vacuolar proton gradient. In the subsequent 10-15 minutes, vesicles pinch off from the tubular structures in a polarized fashion, directly generating fragmentation products of the final size. This phase depends on the production of phosphatidylinositol- 3,5-bisphosphate by the Fab1 complex. I suggest a possible regulation of vacuole fragmentation by the CDK Pho85. Based on my microscopy study I established a sequential involvement of the different fission factors.¦In addition to the morphological description of vacuole fragmentation I more specifically aimed to shed some light on the role of Vps1 in vacuole fragmentation and fusion. I find that both functions are dependent on the GTPase activity of the protein and that also the membrane association of the dynamin-like protein is coupled to the GTPase cycle. I found that Vps1 has the capacity for direct lipid binding on the vacuole and that this lipid binding is at least partially mediated through residues in the GTPase domain, a complete novelty for a dynamin family member. A second stretch located in the region of insert Β has also membrane-binding activity or regulates the association with the vacuole through the GTPase domain. Under the assumption of two membrane-binding regions I speculate on Vps1 as a possible tethering factor for vacuole fusion.