978 resultados para optical property


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Undoped and Ln(3+) (Eu and Tb)-doped crystalline nanobundles of YPO4 were prepared by a facile microwave-assisted route with water as a solvent and without using any surfactant. TEM investigations reveal that the as-prepared powder consists of lenticular-shaped nanobundles (similar to 100 nm in diameter) made of very small nanorods with diameter less than 10 nm and length varying from 20 to 50 nm. Each nanorod in turn is single crystalline, as revealed by HRTEM imaging. The as-prepared nanobundles are easily dispersible in various solvents, especially water, without any surface functionalization, which is critical for various bio-probe applications like cell and tissue imaging. The Eu- and Tb-doped YPO4 nanobundles show good photoluminescence properties and were further evaluated for their use as fluorescent biolabels. Our results show that HeLa cells labelled with Eu- and Tb-doped YPO4 nanobundles show bright red (Eu) and green (Tb) intracellular luminescence under a confocal microscope. Concentration-and time-dependent MTT cell viability assays show that the nanobundles show low toxicity towards cells which makes them promising in bioimaging field.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the temperature-dependent photoluminescence and Raman spectra of In2O3 octahedrons synthesized by an evaporation condensation process. The luminescence obtained here is due to the defect-related deep level emission, which shows highly temperature-dependent behavior in 83-573 K range. Both the position as well as the intensity varies with temperature. Similarly, Raman spectroscopy in 83-303 K range shows temperature-dependent variation in peak intensity but no change in the peak position. Interestingly, the variation of intensity for different peaks is consistent with Placzek theory which invokes the possibility of temperature sensing. We demonstrate the reversibility of peak intensity with temperature for consecutive cycles and excellent stability of the octahedrons toward cryogenic temperature sensing. Overall, both the temperature-dependent photoluminescence and Raman spectra can be explored to determine temperature in the cryogenic range at micro/nano length scales. As an example, we evaluate the temperature-dependent Raman spectra of WO3 that undergoes a phase transition around 210 K and temperature-dependent luminescence of Rhodamine 6G (Rh6G) where intensity varies with temperature.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We report the implementation of a micro-patterned, glass-based photonic sensing element that is capable of label-free biosensing. The diffractive optical analyzer is based on the differential response of diffracted orders to bulk as well as surface refractive index changes. The differential read-out suppresses signal drifts and enables time-resolved determination of refractive index changes in the sample cell. A remarkable feature of this device is that under appropriate conditions, the measurement sensitivity of the sensor can be enhanced by more than two orders of magnitude due to interference between multiply reflected diffracted orders. A noise-equivalent limit of detection (LoD) of 6 x 10(-7) was achieved with this technique with scope for further improvement.