1000 resultados para optical interconnect
Resumo:
A series-parallel model is introduced to calculate the effective thermal conductivities of hollow claddings of photonic crystal fibers ( PCFs ). The temperature distribution and thermal-optical properties of PCF lasers are studied by solving the heat transfer equations. The average power scaling of the PCF lasers in respect of the thermal effects is also discussed. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
Using a quite uniformly side-around arranged compact pumping system, a high power Nd:YAG ceramic quasi-CW laser has been demonstrated with high optical-to-optical conversion efficiency over 50% for the first time. With 450 W quasi-CW stacked laser diode bars pumping at 808 run. 236 W Output at 1064 run was obtained and no saturation phenomena were observed.
Resumo:
The novel long-period fiber grating (LPFG) film sensor is composed of the long-period grating coated with solgel-derived sensitive films. The characteristics of the transmissivity of the LPFG film sensor are studied. By analyzing the relation among the sensitivity S-n, the thin film optical parameters, and the fiber grating parameters, the optimal design parameters of the LPFG film sensor are obtained. Data simulation shows that the resolution of the refractive index of this LPFG film sensor is predicted to be 10(-8). Experimentally, a LPFG film sensor for detection Of C2H5OH was fabricated, and a preliminary gas-sensing test was performed. (c) 2006 Optical Society of America.
Resumo:
The optical properties of zirconia films doped with rhodamine 6G and oxazine 725 by the sol-gel process were investigated using spectroscopic ellipsometry (SE). Accurate refractive index n and the extinction coefficient k were determined using a three-oscillator classical Lorentz model in the wavelength range of 300-800 nm. The derived refractive index of dye-doped films exhibited anomalous dispersion in the absorption region. Wavelength tunable output lasing action yellow and near-infrared wavelength region was achieved by DFB configuration using zirconia films doped with R6G and oxazine 725. (c) 2006 Elsevier B.V. All rights reserved.
Resumo:
Based on the Collins integral formula, the analytic expressions of propagation of the coherent and the incoherent off-axis Hermite-cosh-Gaussian (HChG) beam combinations with rectangular symmetry passing through a paraxial first-order optical system are derived, and corresponding numerical examples are given and analysed. The resulting beam quality is discussed in terms of power in the bucket (PIB). The study suggests that the resulting beam cannot keep the initial intensity shape during the propagation and the beam quality for coherent mode is not always better than that for incoherent mode. Reviewing the numerical simulations of Gaussian, Hermite-Gaussian (HG) and cosh Gaussian (ChG) beam combinations indicates that the Hermite polynomial exerts a chief influence on the irradiance profile of composite beam and far field power concentration.
Resumo:
A series-parallel model is introduced to calculate the effective thermal conductivities of hollow claddings of photonic crystal fibers ( PCFs ). The temperature distribution and thermal-optical properties of PCF lasers are studied by solving the heat transfer equations. The average power scaling of the PCF lasers in respect of the thermal effects is also discussed. (c) 2006 Society of Photo-Optical Instrumentation Engineers.
Resumo:
The zirconia-titania-ORMOSIL waveguide thin films with considerable optical quality were prepared by the sol-gel process. The refractive index (n) and the extinction coefficient (k) were determined by a scanning ellipsometer. Wavelength tunable output of distributed feedback waveguide lasing was demonstrated in Rhodamine 6G doped ZrO2 TiO2-ORMOSIL thin films by varying the temperature, and about 5.5 nm wavelength tuning range was achieved around the emission wavelength of 599 nm. The thermal-optic coefficient (dn/dT) of the active ZrO2-TiO2-ORMOSIL films was deduced. (c) 2005 Elsevier B.V. All rights reserved.
Resumo:
The LB films and spin-coated films of tetra-neopentoxy phthalocyanine zinc (TNPPcZn) were prepared and annealed at different temperatures. Their refractive index (n) and extinction coefficient (k) were measured by p-polarized reflectance. The similar value of n and k, as well as similar changing tendency of it and k at varied annealing temperatures, was found between LB films and spin-coated films. In addition, the absorption curves of TNPPcZn LB films and spin-coated films in visible range at different annealing temperature were investigated. The results indicate that the changing tendency of the extinction coefficient of two kinds of TNPPcZn films obtained from two methods mentioned above were coincident. When the annealing temperature increased to 150 degrees C, the monomers of TNPPcZn films transformed to aggregates, n(f) and k(f) of the films increased. Further, n(f) and k(f) decreased as aggregates changed back to monomers again at the annealing temperature of 300 degrees C. The experimental results coincide well with the theoretical analysis. (C) 2004 Elsevier B.V. All rights reserved.
Resumo:
By employing a uniformly compact side-pumping system, a high-energy electro-optical Q-switched Nd:YAG ceramic laser has been demonstrated. With 420 W quasi-cw laser-diode-array pumping at 808 ran and a 100 Hz modulating repetition rate, 50 mJ output energy at 1064 nm was obtained with 10 ns pulse width, 5 W average output power, and 5 MW peak power. Its corresponding slope efficiency was 29.8%. The laser system operated quite stably and no saturation phenomena have been observed, which means higher output energy could be expected. Laser parameters between ceramic and single-crystal Nd:YAG lasers have been compared, and pulse characteristics of Nd:YAG ceramic with different repetition rate have been investigated in detail. The still-evolving Nd:YAG ceramics are potential super excellent media for high-energy laser applications. (C) 2007 Optical Society of America.
Resumo:
The experiment result of Nd:YVO4 laser pumped by laser diode that was amplified by double-cladding Yb3+ fiber is reported. Stable mode-locking pulses are obtained at repetition rate of 320 MHz and the output power is 15 mW. When laser power is amplified by Yb3+- doped double-cladding fiber amplifier, its power can get to 600 mW. Based on these, experiment of double-frequency is carried out, and green laser with power of 4 mW is obtained. (c) 2007 Wiley Periodicals, Inc.
Resumo:
The optical loss coefficient at 1053-nm wavelength, influenced by Fe ions in N31-type Nd-doped phosphate laser glass, was determined precisely and analyzed in detail. It is found that the optical loss coefficient per unit of Fe concentration (cm^(-1)/ppmw) increases with Fe concentration in the range of 0---300 ppmw, but it approaches a constant as the Fe concentration is larger than 300 ppmw. Such a concentration effect is due to a shift in the redox equilibrium between Fe3+ and Fe2+ ions in the glass. The effect of oxygen pressure, temperature, and variable valence states of other metal ions in glass samples on the optical loss is also discussed.