984 resultados para one-phase water flow


Relevância:

40.00% 40.00%

Publicador:

Resumo:

Gas-liquid mass transfer is an important issue in the design and operation of many chemical unit operations. Despite its importance, the evaluation of gas-liquid mass transfer is not straightforward due to the complex nature of the phenomena involved. In this thesis gas-liquid mass transfer was evaluated in three different gas-liquid reactors in a traditional way by measuring the volumetric mass transfer coefficient (kLa). The studied reactors were a bubble column with a T-junction two-phase nozzle for gas dispersion, an industrial scale bubble column reactor for the oxidation of tetrahydroanthrahydroquinone and a concurrent downflow structured bed.The main drawback of this approach is that the obtained correlations give only the average volumetric mass transfer coefficient, which is dependent on average conditions. Moreover, the obtained correlations are valid only for the studied geometry and for the chemical system used in the measurements. In principle, a more fundamental approach is to estimate the interfacial area available for mass transfer from bubble size distributions obtained by solution of population balance equations. This approach has been used in this thesis by developing a population balance model for a bubble column together with phenomenological models for bubble breakage and coalescence. The parameters of the bubble breakage rate and coalescence rate models were estimated by comparing the measured and calculated bubble sizes. The coalescence models always have at least one experimental parameter. This is because the bubble coalescence depends on liquid composition in a way which is difficult to evaluate using known physical properties. The coalescence properties of some model solutions were evaluated by measuring the time that a bubble rests at the free liquid-gas interface before coalescing (the so-calledpersistence time or rest time). The measured persistence times range from 10 msup to 15 s depending on the solution. The coalescence was never found to be instantaneous. The bubble oscillates up and down at the interface at least a coupleof times before coalescence takes place. The measured persistence times were compared to coalescence times obtained by parameter fitting using measured bubble size distributions in a bubble column and a bubble column population balance model. For short persistence times, the persistence and coalescence times are in good agreement. For longer persistence times, however, the persistence times are at least an order of magnitude longer than the corresponding coalescence times from parameter fitting. This discrepancy may be attributed to the uncertainties concerning the estimation of energy dissipation rates, collision rates and mechanisms and contact times of the bubbles.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Dynamic behavior of bothisothermal and non-isothermal single-column chromatographic reactors with an ion-exchange resin as the stationary phase was investigated. The reactor performance was interpreted by using results obtained when studying the effect of the resin properties on the equilibrium and kinetic phenomena occurring simultaneously in the reactor. Mathematical models were derived for each phenomenon and combined to simulate the chromatographic reactor. The phenomena studied includes phase equilibria in multicomponent liquid mixture¿ion-exchange resin systems, chemicalequilibrium in the presence of a resin catalyst, diffusion of liquids in gel-type and macroporous resins, and chemical reaction kinetics. Above all, attention was paid to the swelling behavior of the resins and how it affects the kinetic phenomena. Several poly(styrene-co-divinylbenzene) resins with different cross-link densities and internal porosities were used. Esterification of acetic acid with ethanol to produce ethyl acetate and water was used as a model reaction system. Choosing an ion-exchange resin with a low cross-link density is beneficial inthe case of the present reaction system: the amount of ethyl acetate as well the ethyl acetate to water mole ratio in the effluent stream increase with decreasing cross-link density. The enhanced performance of the reactor is mainly attributed to increasing reaction rate, which in turn originates from the phase equilibrium behavior of the system. Also mass transfer considerations favor the use ofresins with low cross-link density. The diffusion coefficients of liquids in the gel-type ion-exchange resins were found to fall rapidly when the extent of swelling became low. Glass transition of the polymer was not found to significantlyretard the diffusion in sulfonated PS¿DVB ion-exchange resins. It was also shown that non-isothermal operation of a chromatographic reactor could be used to significantly enhance the reactor performance. In the case of the exothermic modelreaction system and a near-adiabatic column, a positive thermal wave (higher temperature than in the initial state) was found to travel together with the reactive front. This further increased the conversion of the reactants. Diffusion-induced volume changes of the ion-exchange resins were studied in a flow-through cell. It was shown that describing the swelling and shrinking kinetics of the particles calls for a mass transfer model that explicitly includes the limited expansibility of the polymer network. A good description of the process was obtained by combining the generalized Maxwell-Stefan approach and an activity model that was derived from the thermodynamics of polymer solutions and gels. The swelling pressure in the resin phase was evaluated by using a non-Gaussian expression forthe polymer chain length distribution. Dimensional changes of the resin particles necessitate the use of non-standard mathematical tools for dynamic simulations. A transformed coordinate system, where the mass of the polymer was used as a spatial variable, was applied when simulating the chromatographic reactor columns as well as the swelling and shrinking kinetics of the resin particles. Shrinking of the particles in a column leads to formation of dead volume on top of the resin bed. In ordinary Eulerian coordinates, this results in a moving discontinuity that in turn causes numerical difficulties in the solution of the PDE system. The motion of the discontinuity was eliminated by spanning two calculation grids in the column that overlapped at the top of the resin bed. The reactive and non-reactive phase equilibrium data were correlated with a model derived from thethermodynamics of polymer solution and gels. The thermodynamic approach used inthis work is best suited at high degrees of swelling because the polymer matrixmay be in the glassy state when the extent of swelling is low.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The objective of this work was to evaluate peduncle and fruit yield in clone MS 076 and in a clonal population of drip-irrigated, early dwarf cashew trees propagated by layering, in six cropping seasons. In order to meet the increased water requirements of the crop resulting from plant growth and development, irrigation during the dry season was performed daily according to the following water regime: 15 min/plant/day during the 1st year, 30 min/plant/day during the 2nd year, 45 min/plant/day during the 3rd year and 60 min/plant/day during all subsequent years. Water was supplied by one drip emitter/plant, at an (adjustable) flow rate of 36 L/h.The research was carried out in Fortaleza-Ceará, Brazil, and a random block design was utilized, with five replicates and split-plots. The clones were assigned to plots and the cropping seasons were considered as subplots. The clonal population was superior to the clone only with regard to number of nut shells (NNS), and solely in the first season. The clone was superior to the population as to NNS and peduncle yield (PY) in the second season, and also with regard to the three evaluated traits - NNS, PY, and nut shell yield, in the last three cropping seasons.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

River flow in Alpine environments is likely to be highly sensitive to climate change because of the effects of warming upon snow and ice, and hence the intra-annual distribution of river runoff. It is also likely to be influenced strongly by human impacts both upon hydrology (e.g. flow abstraction) and river regulation. This paper compares the river flow and sediment flux of two Alpine drainage basins over the last 5 to 7 decades, one that is largely unimpacted by human activities, one strongly impacted by flow abstraction for hydroelectricity. The analysis shows that both river flow and sediment transport capacity are strongly dependent upon the effects of temperature and precipitation availability upon snow accumulation. As the latter tends to increase annual maximum flows, and given the non-linear form of most sediment transport laws, current warming trends may lead to increased sedimentation in Alpine rivers. However, extension to a system impacted upon by flow abstraction reveals the dominant effect that human activity can have upon river sedimentation but also how human response to sediment management has co-evolved with climate forcing to make disentangling the two very difficult.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fluid mixing in mechanically agitated tanks is one of the major unit operations in many industries. Bubbly flows have been of interest among researchers in physics, medicine, chemistry and technology over the centuries. The aim of this thesis is to use advanced numerical methods for simulating microbubble in an aerated mixing tank. Main components of the mixing tank are a cylindrical vessel, a rotating Rushton turbine and the air nozzle. The objective of Computational Fluid Dynamics (CFD) is to predict fluid flow, heat transfer, mass transfer and chemical reactions. The CFD simulations of a turbulent bubbly flow are carried out in a cylindrical mixing tank using large eddy simulation (LES) and volume of fluid (VOF) method. The Rushton turbine induced flow is modeled by using a sliding mesh method. Numerical results are used to describe the bubbly flows in highly complex liquid flow. Some of the experimental works related to turbulent bubbly flow in a mixing tank are briefly reported. Numerical simulations are needed to complete and interpret the results of the experimental work. Information given by numerical simulations has a major role in designing and scaling-up mixing tanks. The results of this work have been reported in the following scientific articles: ·Honkanen M., Koohestany A., Hatunen T., Saarenrinne P., Zamankhan P., Large eddy simulations and PIV experiments of a two-phase air-water mixer, in Proceedings of ASME Fluids Engineering Summer Conference (2005). ·Honkanen M., Koohestany A., Hatunen T., Saarenrinne P., Zamankhan P., Dynamical States of Bubbling in an Aerated Stirring Tank, submitted to J. Computational Physics.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Kuplakolonnireaktoreiden CFD-mallinnus on talla hetkella voimakkaasti kehittyva tutkimusalue. Kaksifaasivirtauksen luotettava simulointi ja mallintaminen on haastavaa kuplakolonnireaktorissa tapahtuvien ilmioiden monimutkaisuuden vuoksi. Reaktorin kayttaytymiseen vaikuttavat tekijat, kuten kolonnin hydrodynamiikka ja aineensiirto, tulee tuntea hyvin ennen mallien tekoa. Tassa tyossa on kokeellisesti tutkittu erilaisten mittausmenetelmien soveltuvuutta kuplakolonnin hydrodynamiikan tutkimiseen. Mittausmenetelmissa on keskitytty erityisesti CFD-mallien vaatimiin paikallisiin mittauksiin. Lisaksi tyossa on arvioitu mittausmenetelmien soveltuvuutta j a luotettavuutta CFD-mallien validointiin. Tyon kirjallisuusosassa on perehdytty kuplakolonnireaktorin hydrodynaamiseen kayttaytymiseen ja siihen vaikuttaviin tekijoihin. Naita ovat mm. reaktorityypit, kaasun dispergointi, virtaustyypit ja -alueet, kaasun tilavuusosuus, kaasukuplan koko ja kuplan nousunopeus. Mittauksia tehtiin kahdessa erikokoisessa kuplakolonnissa, joista pienemman halkaisija oli 0,078 m ja suuremman 0,182 m. Molempien kolonnien nestepinnan korkeus oli 4,62 m. Mittaukset tehtiin vesijohtovedella ja epaorgaanisella prosessiliuoksella. Hydrodynaamisista ominaisuuksista mitattiin kaasun tilavuusosuus, kaasukuplan koko seka kaasukuplan nousunopeus. Kaasun tilavuusosuusmittaukset tehtiin paaasiassa paine-eromittauksella ja joissakin tapauksissa pinnanmittausmenetelmalla. Kuplakoko- ja kuplan nousunopeusmittaukset tehtiin suumopeusvideokameralla ja laser Doppler-anemometrilla. Mittauksissa kaytettiin kahdeksaa erilaista kaasunjakolaitetta, joilla selvitettiin kaasunjakolaitteen ominaisuuksien vaikutusta kolonnin hydrodynamiikkaan. Tuloksista havaittiin, etta nestefaasin ominaisuuksilla oli suuri vaikutus kolonnin hydrodynaamiseen kayttaytymiseen. En kaasunjakolaitteilla vesijohtovedella mitatut hydrodynaamiset ominaisuudet eivat poikenneet paljoa toisistaan, kun taas prosessiliuoksella kaasunjakolaitteiden valille saatiin huomattavat erot. Mittausmenetelmista laser Doppler-anemometri ei kaytettavissa olleella optiikalla soveltunut kaasukuplien mittaamiseen. Kuplat olivat menetelmalle liian suuria. Suumopeusvideokamerallaja paine-eromittauksella paastiin hyviin tuloksiin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

From 6 to 8 November 1982 one of the most catastrophic flash-flood events was recorded in the Eastern Pyrenees affecting Andorra and also France and Spain with rainfall accumulations exceeding 400 mm in 24 h, 44 fatalities and widespread damage. This paper aims to exhaustively document this heavy precipitation event and examines mesoscale simulations performed by the French Meso-NH non-hydrostatic atmospheric model. Large-scale simulations show the slow-evolving synoptic environment favourable for the development of a deep Atlantic cyclone which induced a strong southerly flow over the Eastern Pyrenees. From the evolution of the synoptic pattern four distinct phases have been identified during the event. The mesoscale analysis presents the second and the third phase as the most intense in terms of rainfall accumulations and highlights the interaction of the moist and conditionally unstable flows with the mountains. The presence of a SW low level jet (30 m s-1) around 1500 m also had a crucial role on focusing the precipitation over the exposed south slopes of the Eastern Pyrenees. Backward trajectories based on Eulerian on-line passive tracers indicate that the orographic uplift was the main forcing mechanism which triggered and maintained the precipitating systems more than 30 h over the Pyrenees. The moisture of the feeding flow mainly came from the Atlantic Ocean (7-9 g kg-1) and the role of the Mediterranean as a local moisture source was very limited (2-3 g kg-1) due to the high initial water vapour content of the parcels and the rapid passage over the basin along the Spanish Mediterranean coast (less than 12 h).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Boiling two-phase flow and the equations governing the motion of fluid in two-phase flows are discussed in this thesis. Disposition of the governing equations in three-dimensional complex geometries is considered from the perspective of the porous medium concept. The equations governing motion in two-phase flows were formulated, discretized and implemented in a subroutine for pressure-velocity solution utilizing the SIMPLE algorithm modified for two-phase flow. The subroutine was included in PORFLO, which is a three-dimensional 5-equation porous media model developed at VTT by Jaakko Miettinen. The development of two-phase flow and the resulting void fraction distribution was predicted in a geometry resembling a section of BWR fuel bundle in a couple of test cases using PORFLO.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

BACKGROUND: Tuberculosis remains one of the world's deadliest transmissible diseases despite widespread use of the BCG vaccine. MTBVAC is a new live tuberculosis vaccine based on genetically attenuated Mycobacterium tuberculosis that expresses most antigens present in human isolates of M tuberculosis. We aimed to compare the safety of MTBVAC with BCG in healthy adult volunteers. METHODS: We did this single-centre, randomised, double-blind, controlled phase 1 study at the Centre Hospitalier Universitaire Vaudois (CHUV; Lausanne, Switzerland). Volunteers were eligible for inclusion if they were aged 18-45 years, clinically healthy, HIV-negative and tuberculosis-negative, and had no history of active tuberculosis, chemoprophylaxis for tuberculosis, or BCG vaccination. Volunteers fulfilling the inclusion criteria were randomly assigned to three cohorts in a dose-escalation manner. Randomisation was done centrally by the CHUV Pharmacy and treatments were masked from the study team and volunteers. As participants were recruited within each cohort, they were randomly assigned 3:1 to receive MTBVAC or BCG. Of the participants allocated MTBVAC, those in the first cohort received 5 × 10(3) colony forming units (CFU) MTBVAC, those in the second cohort received 5 × 10(4) CFU MTBVAC, and those in the third cohort received 5 × 10(5) CFU MTBVAC. In all cohorts, participants assigned to receive BCG were given 5 × 10(5) CFU BCG. Each participant received a single intradermal injection of their assigned vaccine in 0·1 mL sterile water in their non-dominant arm. The primary outcome was safety in all vaccinated participants. Secondary outcomes included whole blood cell-mediated immune response to live MTBVAC and BCG, and interferon γ release assays (IGRA) of peripheral blood mononuclear cells. This trial is registered with ClinicalTrials.gov, number NCT02013245. FINDINGS: Between Jan 23, 2013, and Nov 6, 2013, we enrolled 36 volunteers into three cohorts, each of which consisted of nine participants who received MTBVAC and three who received BCG. 34 volunteers completed the trial. The safety of vaccination with MTBVAC at all doses was similar to that of BCG, and vaccination did not induce any serious adverse events. All individuals were IGRA negative at the end of follow-up (day 210). After whole blood stimulation with live MTBVAC or BCG, MTBVAC was at least as immunogenic as BCG. At the same dose as BCG (5×10(5) CFU), although no statistical significance could be achieved, there were more responders in the MTBVAC group than in the BCG group, with a greater frequency of polyfunctional CD4+ central memory T cells. INTERPRETATION: To our knowledge, MTBVAC is the first live-attenuated M tuberculosis vaccine to reach clinical assessment, showing similar safety to BCG. MTBVAC seemed to be at least as immunogenic as BCG, but the study was not powered to investigate this outcome. Further plans to use more immunogenicity endpoints in a larger number of volunteers (adults and adolescents) are underway, with the aim to thoroughly characterise and potentially distinguish immunogenicity between MTBVAC and BCG in tuberculosis-endemic countries. Combined with an excellent safety profile, these data support advanced clinical development in high-burden tuberculosis endemic countries. FUNDING: Biofabri and Bill & Melinda Gates Foundation through the TuBerculosis Vaccine Initiative (TBVI).