992 resultados para nursing responses
Resumo:
Individuals of Mytilus edulis L., collected from the Erme estuary (S.W. England) in 1978, were exposed to low concentrations (7 to 68 μg l-1) of the water-accommodated fraction (WAF) of North Sea crude oil. The pattern of accumulation of petroleum hydrocarbons in the body tissues was affected by the presence of algal food cells, the period of exposure, the hydrocarbon concentration in seawater, the type of body tissue and the nature of the hydrocarbon. Many physiological responses (e.g. rates of oxygen consumption, feeding, excretion, and scope for growth), cellular responses (e.g. lysosomal latency and digestive cell size) and biochemical responses (e.g. specific activities of several enzymes) were significantly altered by short-term (4 wk) and/or long-term (5 mo) exposure to WAF. Stress indices such as scope for growth and lysosomal latency were negatively correlated with tissue aromatic hydrocarbons.
Resumo:
The marine gastropod Littorina littorea from four sites in the vicinity of the Sullom Voe Oil Terminal was found to display reduced cytochemically determined latency of lysosomal arylsulphatase, β-glucuronidase and acid phosphatase in comparison with snails from a nearby ‘clean’ site. This is interpreted as indicating lysosomal destabilization by environmental factors. Elevated total activities of particular lysosomal hydrolases were recorded at three of the sites in Sullom Voe. Animals from a fourth site (Swarta Taing) showed significant depression of arylsulphatase and β-glucuronidase. Cytochemically determined activity of blood cell NADPH-neotetrazolium reductase, which is a component of microsomal detoxication systems, was stimulated in these same sites in comparison with the ‘clean’ reference site. This stimulation or induction is interpreted as a response to the presence of oil-derived polynuclear aromatic hydrocarbons. These results are discussed in the light of previous work on the effects of hydrocarbons on lysosomes and in terms of the possible physiological consequences for the animals.
Resumo:
1. Catabolic processes of the phasic and catch parts of the adductor muscle ofPlacopecten magellanicus have been studied in relation to valve snap and valve closure responses. It is concluded that the snap response is powered by both parts of the adductor muscle and the valve closure response is powered exclusively by the catch part. 2. Both parts of the adductor muscle show a high glycolytic potential, reflected by high levels of glycolytic enzymes (Table 1) and high glycogen levels (Table 2). Lactate dehydrogenase could not be detected. In contrast, octopine dehydrogenase shows high activities in both parts of the adductor muscle. It is therefore concluded that a main anaerobic pathway in both tissues is the breakdown of glycogen to octopine. In the catch part, however, a considerable amount of the pyruvate formed from glycogen may also be converted into alanine (see below). The glycolytic flux in the catch part is much higher during the snap response than during valve closure. 3. The absence of phosphoenolpyruvate carboxykinase in the adductor muscle ofP. magellanicus and the observed changes in aspartate, alanine and succinate demonstrate that the energy metabolism in the catch part during valve closure shows great similarities to that which occurs only in the initial stage of anaerobiosis in the catch adductor muscle of the sea musselMytilus edulis L. 4. Arginine kinase activity and arginine phosphate content of the phasic part are much higher than those of the catch part (Tables 1 and 3). This may explain why in the phasic part during the snap response most ATP equivalents are derived from arginine phosphate, and in the catch part during both valve responses most are derived from glycolysis (Table 6). Despite the limited contribution of glycolysis in the phasic part during the snap response, the glycolytic flux increases by a factor of at least 75. 5. Evidence is obtained that octopine is neither transported from one part of the adductor muscle to the other, nor from the adductor muscle to other tissues.
Resumo:
1. Catabolic processes of the phasic and catch parts of the adductor muscle ofPlacopecten magellanicus have been studied in relation to valve snap and valve closure responses. It is concluded that the snap response is powered by both parts of the adductor muscle and the valve closure response is powered exclusively by the catch part. 2. Both parts of the adductor muscle show a high glycolytic potential, reflected by high levels of glycolytic enzymes (Table 1) and high glycogen levels (Table 2). Lactate dehydrogenase could not be detected. In contrast, octopine dehydrogenase shows high activities in both parts of the adductor muscle. It is therefore concluded that a main anaerobic pathway in both tissues is the breakdown of glycogen to octopine. In the catch part, however, a considerable amount of the pyruvate formed from glycogen may also be converted into alanine (see below). The glycolytic flux in the catch part is much higher during the snap response than during valve closure. 3. The absence of phosphoenolpyruvate carboxykinase in the adductor muscle ofP. magellanicus and the observed changes in aspartate, alanine and succinate demonstrate that the energy metabolism in the catch part during valve closure shows great similarities to that which occurs only in the initial stage of anaerobiosis in the catch adductor muscle of the sea musselMytilus edulis L. 4. Arginine kinase activity and arginine phosphate content of the phasic part are much higher than those of the catch part (Tables 1 and 3). This may explain why in the phasic part during the snap response most ATP equivalents are derived from arginine phosphate, and in the catch part during both valve responses most are derived from glycolysis (Table 6). Despite the limited contribution of glycolysis in the phasic part during the snap response, the glycolytic flux increases by a factor of at least 75. 5. Evidence is obtained that octopine is neither transported from one part of the adductor muscle to the other, nor from the adductor muscle to other tissues.
Resumo:
1. Aerial rate of oxygen consumption by Mytilus edulis and M. galloprovincialis is 4–17% of the aquatic rate. 2. For Cardium edule and Modiolus demissus the aerial rate of oxygen uptake is between 28 and 78% of the aquatic rate. 3. These species differences are related to the degree of shell gape during air exposure. 4. All species show an apparent oxygen debt after exposure to air, the extent of which is not simply related to either the level of aerobic respiration or the degree of anaerobiosis during exposure. 5. Anaerobic end-products accumulate in the tissues of Mytilus during aerial exposure, but not in Cardium. 6. The relative energy yields by aerobic and anaerobic means in M. edulis are discussed.
Resumo:
The hemocytes of Mytilus californianus are of three types: small and large basophils and large granular acidophils. The basophils contain lysosomal enzymes and phagocytose colloidal carbon. Agglutinins for yeast and human A Rh+ve erythrocytes are present in plasma, but are not needed for effective phagocytosis; in vitro both acidophilic and basophilic hemocytes rapidly phagocytose these particles. Plasma proteins, analyzed electrophoretically, are under strong homeostatic control. When Mya arenaria mantle is placed orthotopically on M. californianus mantle, the implant is invaded by host hemocytes in a manner consistent with that described in other published reports on molluscan graft rejection. Steady state is achieved by 26 days postimplant. Second- and third-set implants are rejected more rapidly than are first-set implants, but this is not a specific response. Third-set implants elicit a host cellular response that is more localized than the response to first-set implants. These data do not permit conclusions with respect to memory in these molluscan immune responses, but do imply a qualitative “improvement” in this quasi-immune response of M. californianus.