979 resultados para non-corresponding demonstrative forms


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Non-enterotoxigenic bacteria of the Bacteroides fragilis group and enterotoxigenic B. fragilis were identified from children with and without aqueous acute diarrhea. In this study, 170 stool samples from 96 children with and 74 without diarrhea were analyzed. Enterotoxin production and the toxin gene detection were detected by cytotoxicity assay on HT-29/C1 cells and by PCR, respectively. B. fragilis species was prevalent in both groups and enterotoxigenic B. fragilis strains were isolated from two children with diarrhea. More studies are important to evaluate the role of each bacteria of the B. fragilis group, including enterotoxigenic strains play in the diarrheal processes in children.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work reports new sensors for the direct determination of Microcystin-LR (MC-LR) in environmental waters. Both selective membrane and solid contact were optimized to ensure suitable analytical features in potentiometric transduction. The sensing layer consisted of Imprinted Sol–Gel (ISG) materials capable of establishing surface interactions with MC-LR. Non-Imprinted Sol–Gel (NISG) membranes were used as negative control. The effects of an ionic lipophilic additive, time of sol–gel polymerization, time of extraction of MC-LR from the sensitive layer, and pH were also studied. The solid contact was made of carbon, aluminium, titanium, copper or nickel/chromium alloys (80 : 20 or 90 : 10). The best ISG sensor had a carbon solid contact and displayed average slopes of 211.3 mV per decade, with detection limits of 7.3 1010 M, corresponding to 0.75 mg L1 . It showed linear responses in the range of 7.7 1010 to 1.9 109 M of MC-LR (corresponding to 0.77–2.00 mg L1 ), thus including the limiting value for MC-LR in waters (1.0 mg L1 ). The potentiometric-selectivity coefficients were assessed by the matched potential method for ionic species regularly found in waters up to their limiting levels. Chloride (Cl) showed limited interference while aluminium (Al3+), ammonium (NH4 + ), magnesium (Mg2+), manganese (Mn2+), sodium (Na+ ), and sulfate (SO4 2) were unable to cause the required potential change. Spiked solutions were tested with the proposed sensor. The relative errors and standard deviation obtained confirmed the accuracy and precision of the method. It also offered the advantages of low cost, portability, easy operation and suitability for adaptation to flow methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cyanobacteria deteriorate the water quality and are responsible for emerging outbreaks and epidemics causing harmful diseases in Humans and animals because of their toxins. Microcystin-LR (MCT) is one of the most relevant cyanotoxin, being the most widely studied hepatotoxin. For safety purposes, the World Health Organization recommends a maximum value of 1 μg L−1 of MCT in drinking water. Therefore, there is a great demand for remote and real-time sensing techniques to detect and quantify MCT. In this work a Fabry–Pérot sensing probe based on an optical fibre tip coated with a MCT selective thin film is presented. The membranes were developed by imprinting MCT in a sol–gel matrix that was applied over the tip of the fibre by dip coating. The imprinting effect was obtained by curing the sol–gel membrane, prepared with (3-aminopropyl) trimethoxysilane (APTMS), diphenyl-dimethoxysilane (DPDMS), tetraethoxysilane (TEOS), in the presence of MCT. The imprinting effect was tested by preparing a similar membrane without template. In general, the fibre Fabry–Pérot with a Molecular Imprinted Polymer (MIP) sensor showed low thermal effect, thus avoiding the need of temperature control in field applications. It presented a linear response to MCT concentration within 0.3–1.4 μg L−1 with a sensitivity of −12.4 ± 0.7 nm L μg−1. The corresponding Non-Imprinted Polymer (NIP) displayed linear behaviour for the same MCT concentration range, but with much less sensitivity, of −5.9 ± 0.2 nm L μg−1. The method shows excellent selectivity for MCT against other species co-existing with the analyte in environmental waters. It was successfully applied to the determination of MCT in contaminated samples. The main advantages of the proposed optical sensor include high sensitivity and specificity, low-cost, robustness, easy preparation and preservation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This work proposes different kind of solid-contact graphite-based electrodes for the selective determination of sulphonamides (SPHs) in pharmaceuticals, biological fluids and aquaculture waters. Sulfadiazine (SDZ) and sulfamethoxazole (SMX) were selected for this purpose for being the most representative compounds of this group. The template molecules were imprinted in sol–gel (ISG) and the resulting material was used as detecting element. This was made by employing it as either a sensing layer or an ionophore of PVC-based membranes and subsequent potentiometric transduction, a strategy never reported before. The corresponding non-imprinted sol–gel (NISG) membranes were used as blank. The effect of plasticizer and kind/charge of ionic lipophilic additive was also studied. The best performance in terms of slope, linearity ranges and signal reproducibility and repeatability was achieved by PVC membranes including a high dielectric constant plasticizer and 15 mg of ISG particles. The corresponding average slope was −51.4 and −52.4 mV/decade, linear responses were 9.0 × 10−6 and 1.7 × 10−5 M, and limits of detection were 0.74 and 1.3 μg/mL for SDZ and for SMX, respectively. Good selectivity with log Kpot < −0.3 was observed for carbonate, chloride, fluoride, hydrogenocarbonate, nitrate, nitrite, phosphate, cyanide, sulfate, borate, persulphate, citrate, tartrate, salicylate, tetracycline, ciprofloxacin, sulphamerazine, sulphatiazole, dopamine, glucose, galactose, cysteine and creatinine. The best sensors were successfully applied to the analysis of real samples with relative errors ranging from −6.8 to + 3.7%.