988 resultados para nitrogen cycling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Regenerated production (including organic nitrogen) is shown here to be important in the Ria de Vigo (Galicia, NW Iberia) in supporting both harmful algal bloom communities during the downwelling season, but also (to a lesser extent) diatom communities during stratified periods of weak to moderate upwelling. The Galician Rias, situated in the Iberian upwelling system, are regularly affected by blooms of toxic dinoflagellates, which pose serious threats to the local mussel farming industry. These tend to occur towards the end of summer, during the transition from upwelling to downwelling favourable seasons, when cold bottom shelf waters in the rias are replaced by warm surface shelf waters. Nitrate, ammonium and urea uptake rates were measured in the Ria de Vigo during a downwelling event in September 2006 and during an upwelling event in June 2007. In September the ria was well mixed, with a downwelling front observed towards the middle of the ria and relatively high nutrient concentrations (1.0-2.6 mu mol L-1 nitrate; 1.0-5.6 mu mol L-1 ammonium; 0.1-0.8 mu mol L-1 phosphate; 2.0-9.0 mu mol L-1 silicic acid) were present throughout the water column. Ammonium represented more than 80% of the nitrogenous nutrients, and the phytoplankton assemblage was dominated by dinoflagellates and small flagellates. In June the water column was stratified, with nutrient-rich, upwelled water below the thermocline and warm, nutrient-depleted water in the surface. At this time, nitrate represented more than 80% of the nitrogenous nutrients, and a mixed diatom assemblage was present. Primary phytoplankton production during both events was mainly sustained by regenerated nitrogen, with ammonium uptake rates of 0.035-0.063 mu mol N L-1 h(-1) in September and 0.078-0.188 mu mol N L-1 h(-1) in June. Although f-ratios were generally low (<0.2) in both June and September, a maximum of 0.61 was reached in June due to higher nitrate uptake (0.225 mu mol N L-1 h(-1)). Total nitrogen uptake was also higher during the upwelling event (0.153-0.366 in June and 0.053-0.096 mu mol N L-1 h(-1) in September). Nitrogen uptake kinetics demonstrated a strong preference for ammonium and urea over nitrate in June.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preserved and archived organic material offers huge potential for the conduct of retrospective and long-term historical ecosystem reconstructions using stable isotope analyses, but because of isotopic exchange with preservatives the obtained values require validation. The Continuous Plankton Recorder (CPR) Survey is the most extensive long-term monitoring program for plankton communities worldwide and has utilised ships of opportunity to collect samples since 1931. To keep the samples intact for subsequent analysis, they are collected and preserved in formalin; however, previous studies have found that this may alter stable carbon and nitrogen isotope ratios in zooplankton. A maximum ~0.9‰ increase of δ15N and a time dependent maximum ~1.0‰ decrease of δ13C were observed when the copepod, Calanus helgolandicus, was experimentally exposed to two formalin preservatives for 12 months. Applying specific correction factors to δ15N and δ13C values for similarly preserved Calanoid species collected by the CPR Survey within 12 months of analysis may be appropriate to enable their use in stable isotope studies. The isotope values of samples stored frozen did not differ significantly from those of controls. Although the impact of formalin preservation was relatively small in this and other studies of marine zooplankton, changes in isotope signatures are not consistent across taxa, especially for δ15N, indicating that species-specific studies may be required. Copyright © 2011 John Wiley & Sons, Ltd.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many of the reactive trace gases detected in the atmosphere are both emitted from and deposited to the global oceans via exchange across the air–sea interface. The resistance to transfer through both air and water phases is highly sensitive to physical drivers (waves, bubbles, films, etc.), which can either enhance or suppress the rate of diffusion. In addition to outlining the fundamental processes controlling the air–sea gas exchange, the authors discuss these drivers, describe the existing parameterizations used to predict transfer velocities, and summarize the novel techniques for measuring in situ exchange rates. They review trace gases that influence climate via radiative forcing (greenhouse gases), those that can alter the oxidative capacity of the atmosphere (nitrogen- and sulfur-containing gases), and those that impact ozone levels (organohalogens), both in the troposphere and stratosphere. They review the known biological and chemical routes of production and destruction within the water column for these gases, whether the ocean acts as a source or sink, and whether temporal and spatial variations in saturation anomalies are observed. A current estimate of the marine contribution to the total atmospheric flux of these gases, which often highlights the significance of the oceans in biogeochemical cycling of trace gases, is provided, and how air–sea gas fluxes may change in the future is briefly assessed.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The biogeochemical cycle of zinc (Zn) in the South Atlantic, at 40°S, was investigated as part of the UK GEOTRACES program. To date there is little understanding of the supply of Zn, an essential requirement for phytoplankton growth, to this highly productive region. Vertical Zn profiles displayed nutrient-like distributions with distinct gradients associated with the watermasses present. Surface Zn concentrations are among the lowest reported for theworld’s oceans (<50 pM). A strong Zn-Si linear relationshipwas observed (Zn (nM)= 0.065 Si (μM), r2=0.97, n = 460). Our results suggest that the use of a global Zn-Si relationship would lead to an underestimation of dissolved Zn in deeper waters of the South Atlantic. By utilizing Si* and a new tracer Zn* our data indicate that the preferential removal of Zn in the Southern Ocean prevented a direct return path for dissolved Zn to the surface waters of the South Atlantic at 40°S and potentially the thermocline waters of the South Atlantic subtropical gyre. The importance of Zn for phytoplankton growth was evaluated using the Zn-soluble reactive phosphorus (SRP) relationship. We hypothesize that the low Zn concentrations in the South Atlantic may select for phytoplankton cells with a lower Zn requirement. In addition, a much deeper kink at ~ 500m in the Zn:SRP ratio was observed compared to other oceanic regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Within models, zooplankton grazing is typically defined as being dependent on total prey concentration, with feeding selectivity expressed only as a function of prey size. This behavior ignores taxonomic preferences shown by the preda- tors and the capacity of some zooplankton to actively select or reject individual prey items from mixtures. We carried out two model experiments comparing impacts of zooplankton displaying passive and active selection, which resulted in contrasting dynamics for the pelagic system. Passive selection by the grazer resulted in a top down control on the prey with a fast turn-over of nutrients. Active selection, on the other hand led to a bottom-up control, with slower nutrient turnover constraining primary production by changing the system toward export of particulate matter. Our results suggest that selective feeding behavior is an important trait, and should be considered alongside size and taxonomy when studying the role of zooplankton impact in the ecosystem.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The Shelf Sea Biogeochemistry research programme directly relates to the delivery of the NERC Earth system science theme and aims to provide evidence that supports a number of marine policy areas and statutory requirements, such as the Marine Strategy Framework Directive and Marine and Climate Acts. The shelf seas are highly productive compared to the open ocean, a productivity that underpins more than 90 per cent of global fisheries. Their importance to society extends beyond food production to include issues of biodiversity, carbon cycling and storage, waste disposal, nutrient cycling, recreation and renewable energy resources. The shelf seas have been estimated to be the most valuable biome on Earth, but they are under considerable stress, as a result of anthropogenic nutrient loading, overfishing, habitat disturbance, climate change and other impacts. However, even within the relatively well-studied European shelf seas, fundamental biogeochemical processes are poorly understood. For example: the role of shelf seas in carbon storage; in the global cycles of key nutrients (nitrogen, phosphorus, silicon and iron); and in determining primary and secondary production, and thereby underpinning the future delivery of many other ecosystem services. Improved knowledge of such factors is not only required by marine policymakers; it also has the potential to increase the quality and cost-effectiveness of management decisions at the local, national and international levels under conditions of climate change. The Shelf Sea Biogeochemistry research programme will take a holistic approach to the cycling of nutrients and carbon and the controls on primary and secondary production in UK and European shelf seas, to increase understanding of these processes and their role in wider biogeochemical cycles. It will thereby significantly improve predictive marine biogeochemical and ecosystem models over a range of scales. The scope of the programme includes exchanges with the open ocean (transport on and off the shelf to a depth of around 500m), together with cycling, storage and release processes on the shelf slope, and air-sea exchange of greenhouse gases (carbon dioxide and nitrous oxide). The DY021 cruise is the first of the 2015 Benthic SSB cruises to investigate the 4 main ‘representative’ sites in the Celtic Sea that will represent all the various sediment types found in the whole area, these being Mud, San, Sandy-Mud and Muddy-Sand. The cruise will also carry out complimentary sampling at the Pelagic SSB programme main site called CANDYFLOSS in the central Shelf area in order to better link the Benthic and Pelagic programmes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of ocean acidification on nitrogen (N2) fixation rates and on the community composition of N2-fixing microbes (diazotrophs) were examined in coastal waters of the North-Western Mediterranean Sea. Nine experimental mesocosm enclosures of ∼50 m3 each were deployed for 20 days during June-July 2012 in the Bay of Calvi, Corsica, France. Three control mesocosms were maintained under ambient conditions of carbonate chemistry. The remainder were manipulated with CO2 saturated seawater to attain target amendments of pCO2 of 550, 650, 750, 850, 1000 and 1250 μatm. Rates of N2 fixation were elevated up to 10 times relative to control rates (2.00 ± 1.21 nmol L-1d-1) when pCO2 concentrations were >1000 μatm and pHT (total scale) < 7.74. Diazotrophic phylotypes commonly found in oligotrophic marine waters, including the Mediterranean, were not present at the onset of the experiment and therefore, the diazotroph community composition was characterised by amplifying partial nifH genes from the mesocosms. The diazotroph community was comprised primarily of cluster III nifH sequences (which include possible anaerobes), and proteobacterial (α and γ) sequences, in addition to small numbers of filamentous (or pseudo-filamentous) cyanobacterial phylotypes. The implication from this study is that there is some potential for elevated N2 fixation rates in the coastal western Mediterranean before the end of this century as a result of increasing ocean acidification. Observations made of variability in the diazotroph community composition could not be correlated with changes in carbon chemistry, which highlights the complexity of the relationship between ocean acidification and these keystone organisms.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Trichodesmium, a colonial cyanobacterium typically associated with tropical waters, was observed between January and April 2014 in the western English Channel. Sequencing of the heterocyst differentiation (hetR) and 16S rRNA genes placed this community within the Clade IV Trichodesmium, an understudied clade previously found only in low numbers in warmer waters. Nitrogen fixation was not detected although measurable rates of nitrate uptake and carbon fixation were observed. Trichodesmium RuBisCO transcript abundance relative to gene abundance suggests the potential for viable and potentially active Trichodesmium carbon fixation. Observations of Trichodesmium when coupled with a numerical advection model indicate that Trichodesmium communities can remain viable for >3.5 months at temperatures lower than previously expected. The results suggest that Clade IV Trichodesmium occupies a different niche to other Trichodesmium species, and is a cold- or low-light-adapted variant.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present here vertical fluxes of methanol, acetaldehyde, and acetone measured directly with eddy covariance (EC) during March to July 2012 near the southwest coast of the UK. The performance of the proton-transfer reaction mass spectrometer (PTR-MS) for flux measurement is characterized, with additional considerations given to the homogeneity and stationarity assumptions required by EC. Concentrations and fluxes of these compounds vary significantly with time of day and wind direction. Higher values of acetaldehyde and acetone are usually observed in the daytime and from the direction of a forested park, most likely due to light-driven emissions from terrestrial plants. Methanol concentration and flux do not demonstrate clear diel variability, suggesting sources in addition to plants. We estimate air–sea exchange and photochemical rates of these compounds, which are compared to measured vertical fluxes. For acetaldehyde, the mean (1�) concentration of 0.13 (0.02) ppb at night may be maintained by oceanic emission, while photochemical destruction outpaces production during the day. Air-sea exchange and photochemistry are probably net sinks of methanol and acetone in this region. Their nighttime concentrations of 0.46 (0.20) and 0.39 (0.08) ppb appear to be affected more by terrestrial emissions and long distance transport, respectively.