988 resultados para necrosis
Resumo:
The changes in nutritional parameters and adipocytokines after structured intermittent interruption of highly active antiretroviral treatment of patients with chronic HIV infection are analyzed. Twenty-seven patients with chronic HIV infection (median CD4+ T cell count/microl: nadir, 394; at the beginning of structured interruptions, 1041; HIV viral load: nadir, 41,521 copies/ml; at the beginning of structured interruptions <50 copies/ml; median time of previous treatment: 60 months) were evaluated during three cycles of intermittent interruptions of therapy (8 weeks on/4 weeks off). CD4+ T cell count, HIV viral load, anthropometric measures, and serum concentrations of triglycerides, cholesterol, leptin, and tumor necrosis factor and its soluble receptors I and II were determined. After the three cycles of intermittent interruptions of therapy, no significant differences in CD4+ T cell count/microl, viral load, or serum concentrations of cholesterol or triglycerides with reference to baseline values were found. A near-significant higher fatty mass (skinfold thicknesses, at the end, 121 mm, at the beginning, 100 mm, p = 0.100), combined with a significant increase of concentration of leptin (1.5 vs. 4.7 ng/ml, p = 0,044), as well as a decrease in serum concentrations of soluble receptors of tumor necrosis factor (TNFRI, 104 vs. 73 pg/ml, p = 0.022; TNFRII 253 vs. 195 pg/ml, p = 0.098) were detected. Structured intermittent interruption of highly active antiretroviral treatment of patients with chronic HIV infection induces a valuable positive modification in markers of lipid turnover and adipose tissue mass.
Resumo:
Background: Inflammation is associated with heart failure (HF) risk factors and also directly affects myocardial function. However, the association between inflammation and HF risk in older adults has not been adequately evaluated. Methods: The association of baseline serum concentrations of interleukin-6 (IL-6), tumor necrosis factor alpha (TNF- ), and C-reactive protein (CRP) with incident HF was assessed with Cox proportional hazards models among 2610 older persons without prevalent HF enrolled in the Health, Aging, and Body Composition (Health ABC) Study (age, 73.6±2.9 years; 48.3% men; 59.6% white). Results: Median (interquartile range) baseline concentrations of IL-6, TNF- , and CRP were 1.80 (1.23, 2.76) pg/mL, 3.14 (2.41, 4.06) pg/mL, and 1.64 (0.99, 3.04) µg/mL, respectively. On follow-up (median, 9.4 years), 311 participants (11.9%) developed HF. In models controlling for clinical predictors of HF and incident coronary heart disease, doubling of IL-6, TNF- , and CRP concentrations was associated with 34% (95% CI, 18 -52%; P<.001), 33% (95% CI, 9 - 63%; P=.006), and 13% (95% CI, 3-24%; P=.01) increase in HF risk, respectively. In models including all 3 markers, IL-6 and TNF- , but not CRP, remained significant. Findings were similar across sex and race. Post-HF ejection fraction (EF) was available in 239 (76.8%) cases. When only cases with preserved EF were considered (n=105), IL-6 (HR per doubling, 1.57; 95% CI, 1.28 -1.94; P<.001), TNF- (HR per doubling, 1.59; 95% CI, 1.12-2.26; P=.01), and CRP (HR per doubling, 1.23; 95% CI, 1.05-1.44; P=.01) were all associated with HF risk in adjusted models. In contrast, when only cases with reduced EF (n=134) were considered, only IL-6 attained marginal significance in adjusted models (HR per doubling, 1.20; 95% CI, 0.99 -1.46; P=.06). Participants with 2 or 3 markers above median had pronounced HF risk in adjusted models (HR, 1.66; 95% CI, 1.12-2.46; P=.01; and HR, 1.76; 95% CI, 1.16 -2.65; P=.007, respectively). Addition of IL-6 to the clinical Health ABC HF model improved discrimination (C index from 0.717 to 0.734; P=.001) and fit (decreased Bayes information criterion by 17.8; P<.001). Conclusions: Inflammatory markers are associated with HF risk among older adults and may improve HF risk stratification.
Resumo:
Genetic variation in immune response is probably involved in the progression of sepsis and mortality in septic patients. However, findings in the literature are sometimes conflicting or their significance is uncertain. Thus, we investigated the possible association between 12 polymorphisms located in the interleukin-6 (IL6), IL10, TLR-2, Toll-like receptor-4 (TLR-4), tumor necrosis factor-α and tumor necrosis factor-β (lymphotoxin α - LTA) genes and sepsis. Critically ill patients classified with sepsis, severe sepsis and septic shock and 207 healthy volunteers were analyzed and genotyped. Seven of the nine polymorphisms showed similar distributions in allele frequencies between patients and controls. Interestingly, our data suggest that the IL10-819 and TLR-2 polymorphisms may be potential predictors of sepsis.
Resumo:
The TNF family member BAFF is a fundamental survival factor for B cells. BAFF binds to three receptors, only one of which, BAFF-R, does not cross-react with the BAFF-related ligand APRIL. The survival function of BAFF on B cells is mediated mainly by BAFF-R and is particularly effective in transitional B cells. BAFF depletion leads to a considerable decrease in mature B cells, without apparent effect on B cell genesis. Consistently, BAFF overexpression results in an expanded B cell compartment and autoimmunity in mice. Elevated amounts of BAFF can be found in the serum of patients suffering from autoimmune diseases. The BAFF system is a promising target for the treatment of autoimmune diseases.
Resumo:
Current applications of cardiac magnetic resonance (CMR) imaging offer a wide spectrum of indications in the setting of acute cardiac care. In particular, CMR is helpful for the differential diagnosis of chest pain by detection of myocarditis and pericarditis. Also, takotsubo cardiomyopathy and acute aortic diseases can be evaluated by CMR and are important differential diagnoses in patients with acute chest pain. In patients with restricted windows for echocardiography, CMR is the method of choice to evaluate complications of acute myocardial infarction (AMI). In AMI, CMR allows for a unique characterization of myocardial damage by quantifying necrosis, microvascular obstruction, oedema (=area at risk), and haemorrhage. These capabilities will help us to understand better the pathophysiological events during infarction and will also allow to assess new treatment strategies in AMI. To what extent the information on tissue damage will guide patient management is not yet clear and further research in this field is warranted. In the near future, CMR will certainly become more routine in acute cardiac care units, as manufacturers are now focusing strongly on this aspect of user-friendliness. Finally, in the next decade or so, MRI of other nuclei such as fluorine and carbon might become a clinical reality, which would allow for metabolic and targeted molecular imaging with excellent sensitivity and specificity
Resumo:
Interleukin (IL)-15 is a pleiotropic cytokine that regulates the proliferation and survival of many cell types. IL-15 is produced by monocytes and macrophages against infectious agents and plays a pivotal role in innate and adaptive immune responses. This study analyzed the effect of IL-15 on fungicidal activity, oxidative metabolism and cytokine production by human monocytes challenged in vitro with Paracoccidioides brasiliensis (Pb18), the agent of paracoccidioidomycosis. Peripheral blood monocytes were pre-incubated with IL-15 and then challenged with Pb18. Fungicidal activity was assessed by viable fungi recovery from cultures after plating on brain-heart infusion-agar. Superoxide anion (O2-), hydrogen peroxide (H2O2), tumour necrosis factor-alpha (TNF-α), IL-6, IL-15 and IL-10 production by monocytes were also determined. IL-15 enhanced fungicidal activity against Pb18 in a dose-dependent pattern. This effect was abrogated by addition of anti-IL-15 monoclonal antibody. A significant stimulatory effect of IL-15 on O2- and H2O2 release suggests that fungicidal activity was dependent on the activation of oxidative metabolism. Pre-treatment of monocytes with IL-15 induced significantly higher levels of TNF-α, IL-10 and IL-15 production by cells challenged with the fungus. These results suggest a modulatory effect of IL-15 on pro and anti-inflammatory cytokine production, oxidative metabolism and fungicidal activity of monocytes during Pb18 infection.
Resumo:
INTRODUCTION Genetic variations may influence clinical outcomes in patients with sepsis. The present study was conducted to evaluate the impact on mortality of three polymorphisms after adjusting for confounding variables, and to assess the factors involved in progression of the inflammatory response in septic patients. METHOD The inception cohort study included all Caucasian adults admitted to the hospital with sepsis. Sepsis severity, microbiological information and clinical variables were recorded. Three polymorphisms were identified in all patients by PCR: the tumour necrosis factor (TNF)-alpha 308 promoter polymorphism; the polymorphism in the first intron of the TNF-beta gene; and the IL-10-1082 promoter polymorphism. Patients included in the study were followed up for 90 days after hospital admission. RESULTS A group of 224 patients was enrolled in the present study. We did not find a significant association among any of the three polymorphisms and mortality or worsening inflammatory response. By multivariate logistic regression analysis, only two factors were independently associated with mortality, namely Acute Physiology and Chronic Health Evaluation (APACHE) II score and delayed initiation of adequate antibiotic therapy. In septic shock patients (n = 114), the delay in initiation of adequate antibiotic therapy was the only independent predictor of mortality. Risk factors for impairment in inflammatory response were APACHE II score, positive blood culture and delayed initiation of adequate antibiotic therapy. CONCLUSION This study emphasizes that prompt and adequate antibiotic therapy is the cornerstone of therapy in sepsis. The three polymorphisms evaluated in the present study appear not to influence the outcome of patients admitted to the hospital with sepsis.
Resumo:
Background: Several markers of atherosclerosis and of inflammation have been shown to predict coronary heart disease (CHD) individually. However, the utility of markers of atherosclerosis and of inflammation on prediction of CHD over traditional risk factors has not been well established, especially in the elderly. Methods: We studied 2202 men and women, aged 70-79, without baseline cardiovascular disease over 6-year follow-up to assess the risk of incident CHD associated with baseline noninvasive measures of atherosclerosis (ankle-arm index [AAI], aortic pulse wave velocity [aPWV]) and inflammatory markers (interleukin-6 [IL-6], C-reactive protein [CRP], tumor necrosis factor-a [TNF-a]). CHD events were studied as either nonfatal myocardial infarction or coronary death ("hard" events), and "hard" events plus hospitalization for angina, or the need for coronary-revascularization procedures (total CHD events). Results: During the 6-year follow-up, 283 participants had CHD events (including 136 "hard" events). IL-6, TNF-a and AAI independently predicted CHD events above Framingham Risk Score (FRS) with hazard ratios [HR] for the highest as compared with the lowest quartile for IL-6 of 1.95 (95%CI: 1.38-2.75, p for trend <0.001), TNF-a of 1.45 (95%CI: 1.04-2.02, p for trend 0.03), of 1.66 (95%CI: 1.19-2.31) for AAI 0.9, as compared to AAI 1.01-1.30. CRP and aPWV were not independently associated with CHD events. Results were similar for "hard" CHD events. Addition of IL-6 and AAI to traditional cardiovascular risk factors yielded the greatest improvement in the prediction of CHD; C-index for "hard"/total CHD events increased from 0.62/0.62 for traditional risk factors to 0.64/0.64 for IL-6 addition, 0.65/0.63 for AAI, and 0.66/0.64 for IL-6 combined with AAI. Being in the highest quartile of IL-6 combined with an AAI 0.90 or >1.40 yielded an HR of 2.51 (1.50-4.19) and 4.55 (1.65-12.50) above FRS, respectively. With use of CHD risk categories, risk prediction at 5 years was more accurate in models that included IL-6, AAI or both, with 8.0, 8.3 and 12.1% correctly reclassified, respectively. Conclusions: Among older adults, markers of atherosclerosis and of inflammation, particularly IL-6 and AAI, are independently associated with CHD. However, these markers only modestly improve cardiovascular risk prediction beyond traditional risk factors.
Resumo:
CONTEXT Six-transmembrane protein of prostate 2 (STAMP2) is a counter-regulator of inflammation and insulin resistance according to findings in mice. However, there have been contradictory reports in humans. OBJECTIVE We aimed to explore STAMP2 in association with inflammatory and metabolic status of human obesity. DESIGN, PATIENTS, AND METHODS STAMP2 gene expression was analyzed in adipose tissue samples (171 visceral and 67 sc depots) and during human preadipocyte differentiation. Human adipocytes were treated with macrophage-conditioned medium, TNF-α, and rosiglitazone. RESULTS In visceral adipose tissue, STAMP2 gene expression was significantly decreased in obese subjects, mainly in obese subjects with type 2 diabetes. STAMP2 gene expression and protein were significantly and inversely associated with obesity phenotype measures (body mass index, waist, hip, and fat mass) and obesity-associated metabolic disturbances (systolic blood pressure and fasting glucose). In addition, STAMP2 gene expression was positively associated with lipogenic (FASN, ACC1, SREBP1, THRSP14, TRα, and TRα1), CAV1, IRS1, GLUT4, and CD206 gene expression. In sc adipose tissue, STAMP2 gene expression was not associated with metabolic parameters. In both fat depots, STAMP2 gene expression in stromovascular cells was significantly higher than in mature adipocytes. STAMP2 gene expression was significantly increased during the differentiation process in parallel to adipogenic genes, being increased in preadipocytes derived from lean subjects. Macrophage-conditioned medium (25%) and TNF-α (100 ng/ml) administration increased whereas rosiglitazone (2 μM) decreased significantly STAMP2 gene expression in human differentiated adipocytes. CONCLUSIONS Decreased STAMP2 expression (mRNA and protein) might reflect visceral adipose dysfunction in subjects with obesity and type 2 diabetes.
Resumo:
OBJECTIVE Increasing evidence indicates that the Fas/Fas ligand interaction is involved in atherogenesis. We sought to analyze soluble Fas (sFas) and soluble Fas ligand (sFasL) concentrations in subjects at high cardiovascular risk and their modulation by atorvastatin treatment. METHODS AND RESULTS ACTFAST was a 12-week, prospective, multicenter, open-label trial which enrolled subjects (statin-free or statin-treated at baseline) with coronary heart disease (CHD), CHD-equivalent, or 10-year CHD risk > 20%. Subjects with LDL-C between 100 to 220 mg/dL (2.6 to 5.7 mmol/L) and triglycerides < or = 600 mg/dL (6.8 mmol/L) were assigned to a starting dose of atorvastatin (10 to 80 mg/d) based on LDL-C at screening. Of the 2117 subjects enrolled in ACTFAST, AIM sub-study included the 1078 statin-free patients. At study end, 85% of these subjects reached LDL-C target. Mean sFas levels were increased and sFasL were reduced in subjects at high cardiovascular risk compared with healthy subjects. Atorvastatin reduced sFas in the whole population as well as in patients with metabolic syndrome or diabetes. Minimal changes were observed in sFasL. CONCLUSIONS sFas concentrations are increased and sFasL are decreased in subjects at high cardiovascular risk, suggesting that these proteins may be novel markers of vascular injury. Atorvastatin reduces sFas, indicating that short-term treatment with atorvastatin exhibits antiinflammatory effects in these subjects.
Resumo:
Leishmania amazonensis causes different diseases depending on the host and parasitic virulence factors. In this study, CBA mice were infected with L. amazonensis isolates from patients with localized (Ba125), diffuse cutaneous (Ba276) or visceral leishmaniasis (Ba109). Mice infected with Ba125 and Ba276 progressed rapidly and lesions displayed an infiltrate rich in parasitized macrophages and were necrotic and ulcerated. Ba109 induced smaller lesions and a mixed inflammatory infiltrate without necrosis or ulceration. Ba109 induced an insidious disease with lower parasite load in CBA mice, similar to human disease. Levels of IFN-γ, IL-4 and IL-10 did not differ among the groups. Because all groups were unable to control the infection, expression of IL-4 associated with low production of IFN-γ in the early phase of infection may account for susceptibility, but others factors may contribute to the differences observed in inflammatory responses and infection progression. Evaluation of some parasitic virulence factors revealed that Ba276 exhibits higher ecto-ADPase and 5'-nucleotidase activities compared to the Ba109 and Ba125 strains. Both Ba276 and Ba125 had higher arginase activity in comparison to Ba109. Finally, these data suggest that the differences in enzyme activities among parasites can account for differences in host inflammatory responses and infection progression.
Resumo:
The immune system and iron availability are intimately linked as appropriate iron supply is needed for cell proliferation, while excess iron, as observed in hemochromatosis, may reduce subsets of lymphocytes. We have tested the effects of a ferritin H gene deletion on lymphocytes. Mx-Cre mediated conditional deletion of ferritin H in bone marrow reduced the number of mature B cells and peripheral T cells in all lymphoid organs. FACS analysis showed an increase in the labile iron pool, enhanced reactive oxygen species formation and mitochondrial depolarization. The findings were confirmed by a B-cell specific deletion using Fth(lox/lox) ; CD19-Cre mice. Mature B cells were strongly under-represented in bone marrow and spleen of the deleted mice, whereas pre-B and immature B cells were not affected. Bone marrow B cells showed increased proliferation as judged by the number of cells in S and G2/M phase as well as BrdU incorporation. Upon in vitro culture with B-cell activating factor of the tumor necrosis factor family (BAFF), ferritin H-deleted spleen B cells showed lower survival rates than wild type cells. This was partially reversed with iron-chelator deferiprone. The loss of T cells was also confirmed by a T cell-specific deletion in Fth(lox/lox) ;CD4-Cre mice. Our data show that ferritin H is required for B and T cell survival by actively reducing the labile iron pool. They further suggest that natural B and T cell maturation is influenced by intracellular iron levels and possibly deregulated in iron excess or deprivation.