977 resultados para murine


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Angiotensin II (AII), a product of rennin-angiotensin system, exerts an important role on the function of immune system cells. In this study, the effect of AII on the phagocytic activity of mouse peritoneal macrophages was assessed. Mice peritoneal macrophages were cultured for 48 h and the influence of different concentrations of AII (10-14 to 10-7 M) and/or losartan, 10-16 to 10-6 M), an AT1 angiotensin receptor antagonist, on phagocytic activity and superoxide anion production was determined. Dimethylthiazoldiphenyltetrazolium bromide reduction and the nucleic acid content were used to assess the cytotoxicity of losartan. A stimulatory effect on phagocytic activity (P < 0.05) was observed with 10-13 M and 10-12 M AII concentrations. The addition of losartan (up to10-14 M) to the cell cultures blocked (P < 0.001) the phagocytosis indicating the involvement of AT1 receptors. In contrast, superoxide anion production was not affected by AII or losartan. The existence of AT1 and AT2 receptors in peritoneal macrophages was demonstrated by immunofluorescence microscopy. These results support the hypothesis that AII receptors can modulate murine macrophage activity and phagocytosis, and suggest that AII may have a therapeutic role as an immunomodulatory agent in modifying the host resistance to infection.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Understanding how uric acid crystals provoke inflammation is crucial to improving our management of acute gout. It is well known that urate crystals stimulate monocytes and macrophages to elaborate inflammatory cytokines, but the tissue response of the synovium is less well understood. Microarray analysis of mRNA expression by these lining cells may help to delineate the genes that are modulated. Employing a murine air-pouch model, a number of genes expressed by innate immune cells were found to be rapidly upregulated by monosodium urate crystals. These findings provide new research avenues to investigate the physiopathology of gouty inflammation, and may eventually lead to new therapeutic targets in acute gout.