984 resultados para multiple photon infrared excitation
Resumo:
IR absorption spectra of As-Se glasses have been studied over a wide range of compositions. Various two-phonon, multiphonon (combination tones) and impurity absorptions have been identified. Compositional variation of relative band intensities has been explained in terms of the chemically ordered network model.
Resumo:
This paper presents an effective feature representation method in the context of activity recognition. Efficient and effective feature representation plays a crucial role not only in activity recognition, but also in a wide range of applications such as motion analysis, tracking, 3D scene understanding etc. In the context of activity recognition, local features are increasingly popular for representing videos because of their simplicity and efficiency. While they achieve state-of-the-art performance with low computational requirements, their performance is still limited for real world applications due to a lack of contextual information and models not being tailored to specific activities. We propose a new activity representation framework to address the shortcomings of the popular, but simple bag-of-words approach. In our framework, first multiple instance SVM (mi-SVM) is used to identify positive features for each action category and the k-means algorithm is used to generate a codebook. Then locality-constrained linear coding is used to encode the features into the generated codebook, followed by spatio-temporal pyramid pooling to convey the spatio-temporal statistics. Finally, an SVM is used to classify the videos. Experiments carried out on two popular datasets with varying complexity demonstrate significant performance improvement over the base-line bag-of-feature method.
Resumo:
The i.r. spectra of a primary dithiocarbamate ester namely, S-methyl dithiocarbamate (SMDTC) and its N-dideuterated compound have been measured between 4000 and 30 cm−1. Spectra in solution and at liquid nitrogen temperature have also been obtained. Assignment of all the fundamentals has been proposed and supported from a full normal coordinate analysis. The band assignments for SMDTC have been compared with those of related molecules and the characteristic bands of primary thioamides are derived. Conformational flexibility of SMDTC has been examined by i.r. and proton NMR spectroscopy. The hindered rotation around the C---N bond has been studied by a complete line shape analysis. The magnitude of ---NH2 and ---CH3 torsional barriers is also estimated from vibrational frequencies and force constants.
Resumo:
A central tenet in the theory of reliability modelling is the quantification of the probability of asset failure. In general, reliability depends on asset age and the maintenance policy applied. Usually, failure and maintenance times are the primary inputs to reliability models. However, for many organisations, different aspects of these data are often recorded in different databases (e.g. work order notifications, event logs, condition monitoring data, and process control data). These recorded data cannot be interpreted individually, since they typically do not have all the information necessary to ascertain failure and preventive maintenance times. This paper presents a methodology for the extraction of failure and preventive maintenance times using commonly-available, real-world data sources. A text-mining approach is employed to extract keywords indicative of the source of the maintenance event. Using these keywords, a Naïve Bayes classifier is then applied to attribute each machine stoppage to one of two classes: failure or preventive. The accuracy of the algorithm is assessed and the classified failure time data are then presented. The applicability of the methodology is demonstrated on a maintenance data set from an Australian electricity company.
Resumo:
The nonlinear mode coupling between two co-directional quasi-harmonic Rayleigh surface waves on an isotropic solid is analysed using the method of multiple scales. This procedure yields a system of six semi-linear hyperbolic partial differential equations with the same principal part governing the slow variations in the (complex) amplitudes of the two fundamental, the two second harmonic and the two combination frequency waves at the second stage of the perturbation expansion. A numerical solution of these equations for excitation by monochromatic signals at two arbitrary frequencies, indicates that there is a continuous transfer of energy back and forth among the fundamental, second harmonic and combination frequency waves due to mode coupling. The mode coupling tends to be more pronounced as the frequencies of the interacting waves approach each other.
Resumo:
Background Although thermal imaging can be a valuable technology in the prevention and management of diabetic foot disease, it is not yet widely used in clinical practice. Technological advancement in infrared imaging increases its application range. The aim was to explore the first steps in the applicability of high-resolution infrared thermal imaging for noninvasive automated detection of signs of diabetic foot disease. Methods The plantar foot surfaces of 15 diabetes patients were imaged with an infrared camera (resolution, 1.2 mm/pixel): 5 patients had no visible signs of foot complications, 5 patients had local complications (e.g., abundant callus or neuropathic ulcer), and 5 patients had difuse complications (e.g., Charcot foot, infected ulcer, or critical ischemia). Foot temperature was calculated as mean temperature across pixels for the whole foot and for specified regions of interest (ROIs). Results No diferences in mean temperature >1.5 °C between the ipsilateral and the contralateral foot were found in patients without complications. In patients with local complications, mean temperatures of the ipsilateral and the contralateral foot were similar, but temperature at the ROI was >2 °C higher compared with the corresponding region in the contralateral foot and to the mean of the whole ipsilateral foot. In patients with difuse complications, mean temperature diferences of >3 °C between ipsilateral and contralateral foot were found. Conclusions With an algorithm based on parameters that can be captured and analyzed with a high-resolution infrared camera and a computer, it is possible to detect signs of diabetic foot disease and to discriminate between no, local, or difuse diabetic foot complications. As such, an intelligent telemedicine monitoring system for noninvasive automated detection of signs of diabetic foot disease is one step closer. Future studies are essential to confirm and extend these promising early findings.
Automatic detection of diabetic foot complications with infrared thermography by asymmetric analysis
Resumo:
Early identification of diabetic foot complications and their precursors is essential in preventing their devastating consequences, such as foot infection and amputation. Frequent, automatic risk assessment by an intelligent telemedicine system might be feasible and cost effective. Infrared thermography is a promising modality for such a system. The temperature differences between corresponding areas on contralateral feet are the clinically significant parameters. This asymmetric analysis is hindered by (1) foot segmentation errors, especially when the foot temperature and the ambient temperature are comparable, and by (2) different shapes and sizes between contralateral feet due to deformities or minor amputations. To circumvent the first problem, we used a color image and a thermal image acquired synchronously. Foot regions, detected in the color image, were rigidly registered to the thermal image. This resulted in 97.8% ± 1.1% sensitivity and 98.4% ± 0.5% specificity over 76 high-risk diabetic patients with manual annotation as a reference. Nonrigid landmark-based registration with Bsplines solved the second problem. Corresponding points in the two feet could be found regardless of the shapes and sizes of the feet. With that, the temperature difference of the left and right feet could be obtained.
Resumo:
Background Patients with diabetic foot disease require frequent screening to prevent complications and may be helped through telemedical home monitoring. Within this context, the goal was to determine the validity and reliability of assessing diabetic foot infection using photographic foot imaging and infrared thermography. Subjects and Methods For 38 patients with diabetes who presented with a foot infection or were admitted to the hospital with a foot-related complication, photographs of the plantar foot surface using a photographic imaging device and temperature data from six plantar regions using an infrared thermometer were obtained. A temperature difference between feet of > 2.2 °C defined a ''hotspot.'' Two independent observers assessed each foot for presence of foot infection, both live (using the Perfusion-Extent-Depth- Infection-Sensation classification) and from photographs 2 and 4 weeks later (for presence of erythema and ulcers). Agreement in diagnosis between live assessment and (the combination of ) photographic assessment and temperature recordings was calculated. Results Diagnosis of infection from photographs was specific (> 85%) but not very sensitive (< 60%). Diagnosis based on hotspots present was sensitive (> 90%) but not very specific (<25%). Diagnosis based on the combination of photographic and temperature assessments was both sensitive (> 60%) and specific (> 79%). Intra-observer agreement between photographic assessments was good (Cohen's j = 0.77 and 0.52 for both observers). Conclusions Diagnosis of foot infection in patients with diabetes seems valid and reliable using photographic imaging in combination with infrared thermography. This supports the intended use of these modalities for the home monitoring of high-risk patients with diabetes to facilitate early diagnosis of signs of foot infection.