997 resultados para muco-cutaneos leishmaniasis
Resumo:
Lutzomyia longipalpis (Lutz & Neiva, 1912) (Diptera: Psychodidae: Phlebotominae) is a vector of visceral leishmaniasis in the Americas and it might represent a complex of sibling species. Reproductive isolation between closely related species often involves differences in courtship behaviour. cacophony (cac) and period (per) are two Drosophila genes that control features of the "lovesong" males produce during courtship that has been implicated in the sexual isolation between closely related species. We are using gene fragments from L. longipalpis' homologues of these two genes to study the speciation process in this putative species complex.
Resumo:
A kit based on an enzyme immunoassay, EIE-Recombinant-Chagas-Biomanguinhos, developed by the Oswaldo Cruz Foundation, was evaluated for the serodiagnosis of chronic Chagas disease. Evaluation was performed with 368 serum samples collected from individuals living in an endemic area for Chagas disease: 131 patients in the chronic phase with confirmed clinical, epidemiological, and serological diagnosis (indirect immunofluorescence, indirect hemagglutination or enzyme-linked immunosorbent assay) and 237 nonchagasic seronegative individuals were considered negative control. The EIE-Recombinant-Chagas-Biomanguinhos kit showed high sensitivity, 100% (CI 95%: 96.4-100%) and high specificity, 100% (CI 95%: 98-100%). The data obtained were in full agreement with clinical and conventional serology data. In addition, no cross-reaction was observed with sera from patients with cutaneous (n=14) and visceral (n=3) leishmaniasis. However, when these sera were tested by conventional serological assays for Chagas disease, cross-reactions were detected in 14.3% and 33.3% of the patients with cutaneous and visceral leishmaniasis, respectively. No cross-reactions were observed when sera from nonchagasic seronegative patients bearing other infectious disease (syphilis, n=8; HTLV, n=8; HCV, n=7 and HBV, n=12) were tested. In addition, sera of patients with inconclusive results for Chagas disease by conventional serology showed results in agreement with clinical evaluation, when tested by the kit. These results are relevant and indicate that the refered kit provides a safe immunodiagnosis of Chagas disease and could be used in blood bank screening.
Resumo:
Seven rhesus macaques were infected intradermally with 10(7) promastigotes of Leishmania (Leishmania) major. All monkeys developed a localized, ulcerative, self-healing nodular skin lesion at the site of inoculation of the parasite. Non-specific chronic inflammation and/or tuberculoid-type granulomatous reaction were the main histopathological manifestations of the disease. Serum Leishmania-specific antibodies (IgG and IgG1) were detected by ELISA in all infected animals; immunoblot analyses indicated that numerous antigens were recognized. A very high degree of variability was observed in the parasite-specific cell-mediated immune responses [as detected by measuring delayed-type hypersensitivity (DTH) reaction, in vitro lymphocyte proliferation, and gamma interferon (IFN-gamma) production] for individuals over time post challenge. From all the recovered monkeys (which showed resolution of the lesions after 11 weeks of infection), 57.2% (4/7) and 28.6% (2/7) animals remained susceptible to secondary and tertiary infections, respectively, but the disease severity was altered (i.e. lesion size was smaller and healed faster than in the primary infection). The remaining monkeys exhibited complete resistance (i.e. no lesion) to each rechallenge. Despite the inability to consistently detect correlates of cell-mediated immunity to Leishmania or correlation between resistance to challenge and DTH, lymphocyte transformation or IFN-gamma production, partial or complete acquired resistance was conferred by experimental infection. This primate model should be useful for measuring vaccine effectiveness against the human disease.
Resumo:
Deltamethrin-impregnated PVC dog collars were tested to assess if they were effective in protecting dogs from sand fly bites of Lutzomyia longipalpis and Lu. migonei. A protective effect against Old World species Phlebotomus perniciosus was demonstrated before. Four dogs wearing deltamethrin collars and three dogs wearing untreated collars (not impregnated with deltamethrin) were kept in separate kennels for over eight months in a village on the outskirts of Fortaleza in Ceará, Brazil. Periodically, a dog from each group was sedated, placed in a net cage for 2 h in which 150 female sand flies had been released 10-15 min before. Lu. longipalpis were used 4, 8, 12, 16, 22, 27, and 35 weeks after the attachment of the collars. Lu. migonei were used 3, 7, 11, 15, 22, 26, and 36 weeks after attachment. During 35 weeks, only 4.1% (81 of 2,022) Lu. longipalpis recovered from the nets with the deltamethrin collared dogs were engorged, an anti-feeding effect of 96%. Mortality initially was over 90% and at 35 weeks was 35% with half of the sand flies dying in the first 2 h. In contrast, 83% of the 2,094 Lu. longipalpis recovered from the nets containing the untreated collared dogs were engorged and the mortality ranged from zero to 18.8% on one occasion with 1.1% dying in the first 2 h. Similar findings were found with Lu. migonei: of 2,034 sand flies recovered over this period, only 70 were engorged, an anti-feeding effect of 96.5%, and mortality ranged from 91% initially to 46% at 36 weeks. In contrast, engorgement of controls ranged from 91 to71% and a mortality ranged from 3.5 to 29.8%. These studies show that deltamethrin impregnated collars can protect dogs against Brazilian sand flies for up to eight months. Thus, they should be useful in a program to control human and canine visceral leishmaniasis.
Resumo:
Lutzomyia evandroi Costa Lima and Antunes, 1936 is found in Rio Grande do Norte, northeastern Brazil, in areas of visceral and mucocutaneous leishmaniasis and follows the same geographic distribution of L. longipalpis. The biological cycle, oviposition, morphological and behavioral characteristics of the species were studied under experimental conditions. The average number of eggs per wild caught female varied from 21 to 50 eggs along the year, with a peak occurring between January and March and another in August, with oviposition lasting for 4 to 12 days. The mean larval phase was 24 days. Ovipositing rates were influenced by rainfall and temperature indexes, with an increase of eggs per oviposition at the beginning and at the end of the rainy season, and a decrease at the peak of the rainy season.
Resumo:
In 1997, 1998 and 1999 we performed several captures in the State of Piauí, in the counties of Barro Duro, Campo Maior, Castelo, Floriano, Picos, São Raimundo Nonato and Teresina. We used CDC light traps inside houses, in a primary forest and in one cave. Seventeen species were collected being Lutzomyia longipalpis, Lutzomyia samueli, Lutzomyia whitmani andLutzomyia lenti the most captured species. The genus Brumptomyia, L. whitmani, Lutzomyia sordellii, Lutzomyia carmelinoi, Lutzomyia termitophila, Lutzomyia peresi and Lutzomyia quinquefer are reported for first time in Piauí. We call the attention for the presence of L. whitmani and L. longipalpis, important vectors of leishmaniasis in various regions of South America.
Resumo:
Toro Toro (T) and Yungas (Y) have been described as genetically well differentiated populations of the Lutzomyia longipalpis (Lutz & Neiva, 1912) complex in Bolivia. Here we use geometric morphometrics to compare samples from these populations and new populations (Bolivia and Nicaragua), representing distant geographical origins, qualitative morphological variation ("one-spot" or "two-spots" phenotypes), ecologically distinct traits (peridomestic and silvatic populations), and possibly different epidemiological roles (transmitting or nor transmitting Leishmania chagasi). The Nicaragua (N) (Somotillo) sample was "one-spot" phenotype and a possible peridomestic vector. The Bolivian sample of the Y was also "one-spot" phenotype and a demonstrated peridomestic vector of visceral leishmaniasis (VL). The three remaining samples were silvatic, "two-spots" phenotypes. Two of them (Uyuni and T) were collected in the highlands of Bolivian where VL never has been reported. The last one (Robore, R) came from the lowlands of Bolivia, where human cases of VL are sporadically reported. The decomposition of metric variation into size and shape by geometric morphometric techniques suggests the existence of two groups (N/Y/R, and U/T). Several arguments indicate that such subdivision of Lu. longipalpis could correspond to different evolutionary units.
Resumo:
We have examined the effects of two agents depleting the intracellular pool of glutathione (GSH) on macrophage activation induced by IFN-gamma + LPS, as measured by nitrite production and leishmanicidal activity. Diethylmaleate (DEM), which depletes intracellular GSH by conjugation via a reaction catalyzed by the GSH-S-transferase, strongly inhibited nitrite secretion and leishmanicidal activity when added before or at the time of addition of IFN-gamma + LPS; this inhibition was progressively lost when addition of DEM was delayed up to 10 hr. A close correlation was observed between levels of intracellular soluble GSH during activation and nitrite secretion. Inhibition was partially reversed by the addition of glutathione ethyl ester (GSH-Et). Buthionine sulfoximine (BSO), a specific inhibitor of gamma-glutamylcysteine synthetase, also inhibited macrophage activation, although to a lesser extent than DEM despite a more pronounced soluble GSH depletion. This inhibition was completely reversed by the addition of GSH-Et. DEM and BSO did not alter cell viability or PMA-triggered O2- production by activated macrophages, suggesting that the inhibitory effects observed on nitrite secretion and leishmanicidal activity were not related to a general impairment of macrophage function. DEM and BSO treatment reduced iNOS specific activity and iNOS protein in cytosolic extracts. DEM also decreased iNOS mRNA expression while BSO had no effect. Although commonly used as a GSH-depleting agent, DEM may have additional effects because it can also act as a sulhydryl reagent; BSO, on the other hand, which depletes GSH by enzymatic inhibition, has no effect on protein-bound GSH. Our results suggest that both soluble and protein-bound GSH may be important for the induction of NO synthase in IFN-gamma + LPS-activated macrophages.
Resumo:
A morphological study of the midgut of Lutzomyia intermedia, the primary vector of cutaneous leishmaniasis, in southeast Brazil, was conducted by light, scanning and transmission electron microscopy. The midgut is formed by a layer of epithelium of columnar cells on a non-cellular basal lamina, under which there is a musculature, which consists of circular and longitudinal muscular fibers. A tracheolar network is observed surrounding and penetrating in the musculature. Females were examined 12, 24, 48, 72 h and 5 days following a blood meal and were analyzed comparatively by transmission electron microscopy with starved females. In starved females, the epithelium of both the anterior and posterior sections of the midgut present whorl shaped rough endoplasmic reticulum. The posterior section does not present well-developed cellular structures such as mitochondria. Observations performed at 12, 24, 48 and 72 h after the blood meal showed morphological changes in the cellular structures in this section, and the presence of the peritrophic matrix up to 48 h after the blood meal. Digestion is almost complete and a few residues are detected in the lumen 72 h after blood feeding. Finally, on the 5th day after the blood meal all cellular structures present the original feature resembling that seen in starved sand flies. Morphometric data confirmed the morphological observations. Mitochondria, nuclei and microvilli of midgut epithelial cells are different in starved and blood fed females. The mitochondria present a similar profile in the epithelium of both the anterior and posterior section of the midgut, with higher dimension in starved females. The cell microvilli in the posterior section of the midgut of starved females are twice the size of those that had taken a blood meal. We concluded that there are changes in the midgut cellular structures of L. intermedia during the digestion of blood, which are in agreement with those described for other hematophagous diptera.
Resumo:
Whole genome sequences of microbial pathogens present new opportunities for clinical application. Presently, genome sequencing of the human protozoan parasite Leishmania major is in progress. The driving forces behind the genome project are to identify genes with key cellular functions and new drug targets, to increase knowledge on mechanisms of drug resistance and to favor technology transfer to scientists from endemic countries. Sequencing of the genome is also aimed at the identification of genes that are expressed in the infectious stages of the parasite and in particular in the intracellular form of the parasite. Several protective antigens of Leishmania have been identified. In addition to these antigens, lysosomal cysteine proteinases (CPs) have been characterized in different strains of Leishmania and Trypanosoma, as new target molecules. Recently, we have isolated and characterized Type I (CPB) and Type II (CPA) cysteine proteinase encoding genes from L. major. The exact function of cysteine proteinases of Leishmania is not completely understood, although there are a few reports describing their role as virulence factors. One specific feature of CPB in Leishmania and other trypanosomatids, is the presence of a Cterminal extension (CTE) which is possibly indicative of conserved structure and function. Recently, we demonstrated that DNA immunization of genetically susceptible BALB / c mice, using a cocktail of CPB and CPA genes, induced long lasting protection against L. major infection. This review intends to give an overview of the current knowledge on genetic vaccination used against leishmaniasis and the importance of CP genes for such an approach.
Resumo:
A total of 519 wild animals belonging to eleven species were collected during a two year study in a cutaneous leishmaniasis endemic area in Venezuela (La Matica, Lara State). The animals were captured in home-made Tomahawk-like traps baited with maize, bananas or other available local fruits, and parasites were isolated from 27 specimens. Two different species were found naturally infected with flagellates, i.e., cotton rats (Sigmodon hispidus) and black rats (Rattus rattus). Characterization of the parasites using PCR, kDNA restriction pattern and hybridization with species-specific probes revealed the presence of Leishmania (L.) mexicana in three of the black rats and Leishmania (V.) braziliensis in two others. The latter species was also identified in the single positive specimen of S. hispidus. The results suggested both species of animals as possible reservoirs of Leishmania sp.
Resumo:
Leishmania infected of Lutzomyia spp. are rare in endemic areas. We tested the hypothesis that there is clustering of infected vectors by combining pinpoint capture with sensitive L. braziliensis kDNA minicircle specific PCR/dot blot in an endemic area in the State of Bahia. Thirty out of 335 samples (10 to 20 sand flies/sample; total of 4,027 female sand flies) were positive by PCR analysis and dot blot leading to a underestimated overall rate of 0.4% positive phlebotomines. However, 83.3% of the positive samples were contributed by a single sector out of four sectors of the whole studied area. This resulted in a rate of 1.5% Leishmania positive phlebotomines for this sector, far above rates of other sectors. Incidence of American cutaneous leishmaniasis cases for this sector was about twice that for other sectors. Our results show that there is a non-homogeneous distribution of Leishmania-infected vectors. Such a clustering may have implications in control strategies against leishmaniasis, and reinforces the necessity of understanding the ecological and geographical factors involved in leishmanial transmission.
Resumo:
Peixoto de Azevedo is located in the north of State of Mato Grosso, where environmental alterations led to an outbreak of American cutaneous leishmaniasis in the 80s. The parasite from patients was characterized as Leishmania (V.) braziliensis. The aim of this study is to contribute to the sand fly ecology of Central-West Brazil. Captures were carried out monthly using CDC light traps. Twenty-six species of sand fly were characterized; among which Lutzomyia (Lutzomyia) spathotrichia, L. runoides and L. (Psychodopygus) llanosmartinsi were recorded in the State of Mato Grosso for the first time. L. (Nyssomyia) whitmani, L. (N.) antunesi, L. (L.) spathotrichia, L. (P.) c. carrerai, L. (P.) complexa, L. (P.) lainsoni and L. (N.) umbratilis constituted 92.4% of the local fauna, among which L. (N.) whitmani and L. (N.) antunesi, accounting for about 53% of the fauna at the stations of capture. On the vertical distribution of sand flies on the Beira-Rio Farm, L. (N.) whitmani and L. (N.) antunesi prevailed at ground level and in the canopy, respectively, whereas on the BR-080, L. (P.) llanosmartinsi was prevalent on the ground and L. (P.) c. carrerai, in the canopy. It is suggested that L. (N.) umbratilis is the local vector.
Resumo:
After inoculation of Leishmania major, a rapid production of IL-4 by LACK-specific CD4+ T cells has been shown to drive Th2 cell development in susceptible mice i.e. BALB/c and C57BL/6 mice rendered susceptible by neutralization of IFN-gamma at the onset of infection. Here, we showed that peptide AA 156-173 induced an early IL-4 mRNA expression not only in BALB/c mice but also in resistant B10.D2 mice when IFN-gamma is neutralized. Epitope mapping of LACK protein demonstrated that peptide containing AA 293-305 induced early IL-4 mRNA transcripts in susceptible H-2b mice i.e. BALB/b and resistant C57BL/6 mice when IFN-gamma is neutralized. Stringently, the early IL-4 response to the H-2d (AA 156-173) or the H-2b (AA 293-305) epitopes occurred in V beta 4 V alpha 8 CD4+ T cells from either H-2d or H-2b susceptible mice, respectively.
Resumo:
Laboratory-reared Lutzomyia longipalpis (Lutz and Neiva 1912) was tested with extracts of two ichthyotoxic plants, known as timbós, used as fishing poison in the Amazon. Phlebotomines, L. longipalpis, and plants, Antonia ovata and Derris amazonica, were collected in the Raposa-Serra do Sol Indian Reserve, a focus of visceral leishmaniasis in the State of Roraima, Brazil. Extracts were prepared from dried leaves of A. ovata and roots of D. amazonica that were percolated in water, filtered and dried out at 50°C. The solid extract obtained was diluted in water at 150, 200 and 250 mg/ml. The solution was blotted in filter paper placed at the bottom of cylindric glass tubes containing sand flies. For each plant extract and dilution, two series of triplicates with 5 male and 5 female specimens of L. longipalpis were used. Mortality was recorded every 2 h during 72 h of exposure. At 72 h the mortality was as high as 80% for extracts of A. ovata (LD50 = 233 mg/ ml), and 100% for D. amazonica (LD50 = 212 mg/ ml) whereas in the control groups maximum mortality never surpassed 13%. Preliminary assays indicated that A. ovata and D. amazonica displayed significant insecticide effect against L. longipalpis.