985 resultados para magnetic tape materials


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Bulimia nervosa (BN) is an eating disorder characterized by recurrent episodes of binge eating and inappropriate compensatory behaviors (such as purging, fasting, or excessive exercise) to prevent weight gain. BN has been associated with deficits in inhibitory control processes. The basal ganglia specifically, the nucleus accumbens (NAc) and the caudate nucleus (CN) are part of the frontostriatal circuits involved in inhibitory control. The main goal of this study was to investigate the presence of morphological alterations in the NAc and the CN in a sample of patients diagnosed with BN.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Dissertação de mestrado integrado em Engenharia Eletrónica Industrial e Computadores

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this contribution, original limit analysis numerical results are presented dealing with some reinforced masonry arches tested at the University of Minho-UMinho, PT. Twelve in-scale circular masonry arches were considered, reinforced in various ways at the intrados or at the extrados. GFRP reinforcements were applied either on undamaged or on previously damaged elements, in order to assess the role of external reinforcements even in repairing interventions. The experimental results were critically discussed at the light of limit analysis predictions, based on a 3D FE heterogeneous upper bound approach. Satisfactory agreement was found between experimental evidences and the numerical results, in terms of failure mechanisms and peak load.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A novel approach for tissue engineering applications based on the use of magnetoelectric materials is presented. This work proves that magnetoelectric Terfenol-D/poly(vinylidene fluoride-co-trifluoroethylene) composites are able to provide mechanical and electrical stimuli to MC3T3-E1 pre-osteoblast cells and that those stimuli can be remotely triggered by an applied magnetic field. Cell proliferation is enhanced up to 25% when cells are cultured under mechanical (up to 110 ppm) and electrical stimulation (up to 0.115 mV), showing that magnetoelectric cell stimulation is a novel and suitable approach for tissue engineering allowing magnetic, mechanical and electrical stimuli.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, the macro steel fiber (SF), carbon fiber (CF) and nano carbon black (NCB) as triphasic conductive materials were added into concrete, in order to improve the conductivity and ductility of concrete. The influence of NCB, SF and CF on the post crack behavior and conductivity of concrete was explored. The effect of the triphasic conductive materials on the self-diagnosing ability to the load–deflection property and crack widening of conductive concrete member subjected to bending were investigated. The relationship between the fractional change in surface impedance (FCR) and the crack opening displacement (COD) of concrete beams with conductive materials has been established. The results illustrated that there is a linear relationship between COD and FCR.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The cyclic load triaxial test is a laboratory test that allows studying the mechanical behaviour of unbound granular materials used in base/subbase layers of road pavements. The resilient modulus and permanent strains are required as inputs in structural pavement design. This paper presents some results obtained for recycled materials (crushed concrete aggregate and blended crushed waste aggregate), with a view to promoting their use in pavement structures. Results relating to a reference material (limestone) are also presented, for comparison. All the test results discussed in this paper were obtained in variable cyclic radial pressure (VCP) tests. The tests performed (VCP) aim to study the influence of water content on the resilient modulus of recycled materials, as well as on the resistance to permanent deformation. Using the experimental data as a basis, further modelling work was carried out to establish the stresses developing in base/capping layers in typical Belgian road pavements. These numerical results allow to propose some simplifications of the stress paths applied in the testing procedures and to establish a new test protocol that also considers compaction during construction works. The results of this research work provide an excellent set of findings for the mechanical characterization of unbound base materials through the cyclic triaxial test, and contribute to a better understanding and correct application of recycled materials under geotechnical engineering background

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Biopolymer-based materials have been of particular interest as alternatives do synthetic polymers due to their low toxicity, biodegradability and biocompatibility. Among them, chitosan is one of the most studied ones and has recently been investigated for the application as solid state polymer electrolytes. Furthermore, it can serve as a host for luminescent species such as rare earth ions, giving rise to materials with increased functionality, of particular interest for electrochemical devices. In this study, we investigate chitosan based luminescent materials doped wit Eu3+ and Li+ triflate salts from the structural, photophysical and conductivity points of view. Because the host presents a broad emission band in the blue to green, while Eu3+ emits in the red, fine tuning of emission colour and/or generation of white light is possible by optimizing composition and excitation scheme. Europium lifetimes (5D0) are in the range 270 – 350 µs and quantum yields are as high as 2%. Although Li+ does not interfere with the luminescent properties, it grants ion-conducting properties to the material suggesting that a combination of both properties could be further explored in multifunctional device.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Designing novel multifunctional materials from natural resources is a challenging goal that has increasingly attracted researchers. Recently, the great potential of silk fibers has been recognized. The target readers for this review are researchers from different backgrounds (i.e., non-specialists in silk research) with special interests on the physical–chemical characterization of silk fibers, since their knowledge is crucial for the improvement of existent silk-based biomaterials and the basis for the development of new products. Examples of usual applications of Bombyx mori silk fibers are given and some of the most recent and exciting progress in new technological fields, is presented.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Silk fibroin is a commonly available natural biopolymer produced in specialized glands of arthropods, such as silkworms or spiders, scorpions, mites, bees and flies. This biopolymer has a long history of use in textile production and also as sutures or treatment of skin wounds. Silk fibroin has been increasingly explored in other areas of biomedical science where we can find a higher morphological diversification of silk biomaterials like films, electrospun fibers, 3D porous scaffolds or nanoparticles. In recent years it has been demonstrated that fibroin is an excellent material for active components in optical devices. This new application opens the way towards the development of multifunctional optoelectronic devices, which in perspective can be made fully biocompatible and eventually bioresorbable. Moreover, fibroin can be added to other biocomponents in order to modify the biomaterial properties leading to optimized and total different functions. These improvements can go from higher cell adhesion in tissue engineering or enhanced optical transparency, smoothness or flexibility in optoelectronic devices. The tuning and completely understanding of silk fibers physicochemical properties and interaction with other elements are of crucial importance for the improvement of already existent silk-based materials and the basis for the development of new products.