980 resultados para métodos de coleta de fezes
Resumo:
The use of intelligent agents in multi-classifier systems appeared in order to making the centralized decision process of a multi-classifier system into a distributed, flexible and incremental one. Based on this, the NeurAge (Neural Agents) system (Abreu et al 2004) was proposed. This system has a superior performance to some combination-centered methods (Abreu, Canuto, and Santana 2005). The negotiation is important to the multiagent system performance, but most of negotiations are defined informaly. A way to formalize the negotiation process is using an ontology. In the context of classification tasks, the ontology provides an approach to formalize the concepts and rules that manage the relations between these concepts. This work aims at using ontologies to make a formal description of the negotiation methods of a multi-agent system for classification tasks, more specifically the NeurAge system. Through ontologies, we intend to make the NeurAge system more formal and open, allowing that new agents can be part of such system during the negotiation. In this sense, the NeurAge System will be studied on the basis of its functioning and reaching, mainly, the negotiation methods used by the same ones. After that, some negotiation ontologies found in literature will be studied, and then those that were chosen for this work will be adapted to the negotiation methods used in the NeurAge.
Resumo:
The objective of the researches in artificial intelligence is to qualify the computer to execute functions that are performed by humans using knowledge and reasoning. This work was developed in the area of machine learning, that it s the study branch of artificial intelligence, being related to the project and development of algorithms and techniques capable to allow the computational learning. The objective of this work is analyzing a feature selection method for ensemble systems. The proposed method is inserted into the filter approach of feature selection method, it s using the variance and Spearman correlation to rank the feature and using the reward and punishment strategies to measure the feature importance for the identification of the classes. For each ensemble, several different configuration were used, which varied from hybrid (homogeneous) to non-hybrid (heterogeneous) structures of ensemble. They were submitted to five combining methods (voting, sum, sum weight, multiLayer Perceptron and naïve Bayes) which were applied in six distinct database (real and artificial). The classifiers applied during the experiments were k- nearest neighbor, multiLayer Perceptron, naïve Bayes and decision tree. Finally, the performance of ensemble was analyzed comparatively, using none feature selection method, using a filter approach (original) feature selection method and the proposed method. To do this comparison, a statistical test was applied, which demonstrate that there was a significant improvement in the precision of the ensembles
Resumo:
Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP)
Resumo:
The activity of requirements engineering is seen in agile methods as bureaucratic activity making the process less agile. However, the lack of documentation in agile development environment is identified as one of the main challenges of the methodology. Thus, it is observed that there is a contradiction between what agile methodology claims and the result, which occurs in the real environment. For example, in agile methods the user stories are widely used to describe requirements. However, this way of describing requirements is still not enough, because the user stories is an artifact too narrow to represent and detail the requirements. The activities of verifying issues like software context and dependencies between stories are also limited with the use of only this artifact. In the context of requirements engineering there are goal oriented approaches that bring benefits to the requirements documentation, including, completeness of requirements, analysis of alternatives and support to the rationalization of requirements. Among these approaches, it excels the i * modeling technique that provides a graphical view of the actors involved in the system and their dependencies. This work is in the context of proposing an additional resource that aims to reduce this lack of existing documentation in agile methods. Therefore, the objective of this work is to provide a graphical view of the software requirements and their relationships through i * models, thus enriching the requirements in agile methods. In order to do so, we propose a set of heuristics to perform the mapping of the requirements presented as user stories in i * models. These models can be used as a form of documentation in agile environment, because by mapping to i * models, the requirements will be viewed more broadly and with their proper relationships according to the business environment that they will meet
Resumo:
Data clustering is applied to various fields such as data mining, image processing and pattern recognition technique. Clustering algorithms splits a data set into clusters such that elements within the same cluster have a high degree of similarity, while elements belonging to different clusters have a high degree of dissimilarity. The Fuzzy C-Means Algorithm (FCM) is a fuzzy clustering algorithm most used and discussed in the literature. The performance of the FCM is strongly affected by the selection of the initial centers of the clusters. Therefore, the choice of a good set of initial cluster centers is very important for the performance of the algorithm. However, in FCM, the choice of initial centers is made randomly, making it difficult to find a good set. This paper proposes three new methods to obtain initial cluster centers, deterministically, the FCM algorithm, and can also be used in variants of the FCM. In this work these initialization methods were applied in variant ckMeans.With the proposed methods, we intend to obtain a set of initial centers which are close to the real cluster centers. With these new approaches startup if you want to reduce the number of iterations to converge these algorithms and processing time without affecting the quality of the cluster or even improve the quality in some cases. Accordingly, cluster validation indices were used to measure the quality of the clusters obtained by the modified FCM and ckMeans algorithms with the proposed initialization methods when applied to various data sets