978 resultados para lung tumor
Resumo:
Patients affected with intra-thoracic recurrences of primary or secondary lung malignancies after a first course of definitive radiotherapy have limited therapeutic options, and they are often treated with a palliative intent. Re-irradiation with stereotactic ablative radiotherapy (SABR) represents an appealing approach, due to the optimized dose distribution that allows for high-dose delivery with better sparing of organs at risk. This strategy has the goal of long-term control and even cure. Aim of this review is to report and discuss published data on re-irradiation with SABR in terms of efficacy and toxicity. Results indicate that thoracic re-irradiation may offer satisfactory disease control, however the data on outcome and toxicity are derived from low quality retrospective studies, and results should be cautiously interpreted. As SABR may be associated with serious toxicity, attention should be paid for an accurate patients' selection.
Resumo:
L'abcès pulmonaire se présente de manière très pléomorphe selon les germes initialement impliqués. Des symptômes gé néraux et une évolution souvent subaiguë sont retrouvés en cas d'aspiration de la flore oropharyngée, chez des patients avec des troubles de l'état de conscience ou de la déglutition. L'infection est très souvent polymicrobienne, avec présence de germes anaérobes dans deux tiers des cas. La prise en charge consiste en un traitement antibiotique prolongé, jusqu'à résolution ou stabilité de l'image radiologique. En cas d'état toxique ou d'absence de drainage bronchique spontané, un drainage de l'abcès est à discuter. Les sanctions chirurgicales sont peu souvent nécessaires et envisagées indépendamment de la taille de l'abcès excepté lors de néoplasie sous-jacente. Lung abscess occurs in very pleomorphic according to germs initially involved. The mechanism commonly found is an aspiration of the oropharyngeal flora in patients with disorders of consciousness or swallowing. The infection is polymicrobial, with presence of anaerobic germs in 2/3 of the cases. The support consists of a prolonged antibiotic treatment, as well as anaerobic until resolution or stability of the radiological image. In case of prolonged toxic state, drainage of the abscess is to be discussed especially if there is no airways drainage. Surgical sanctions is rarely needed regardless of the size of the abscess, unless underlying carcinoma is present.
Resumo:
Background: Lung cancer (LC) is the leading cause of cancer death in the developed world. Most cancers are associated with tobacco smoking. A primary hope for reducing lung cancer has been prevention of smoking and successful smoking cessation programs. To date, these programs have not been as successful as anticipated. Objective: The aim of the current study was to evaluate whether lung cancer screening combining low dose computed tomography with autofluorescence bronchoscopy (combined CT & AFB) is superior to CT or AFB screening alone in improving lung cancer specific survival. In addition, the extent of improvement and ideal conditions for combined CT & AFB screening were evaluated. Methods: We applied decision analysis and Monte Carlo simulation modeling using TreeAge Software to evaluate our study aims. Histology- and stage specific probabilities of lung cancer 5-year survival proportions were taken from Surveillance and Epidemiologic End Results (SEER) Registry data. Screeningassociated data was taken from the US NCI Prostate, Lung, Colorectal and Ovarian Cancer Screening Trial (PLCO), National Lung Screening Trial (NLST), and US NCI Lung Screening Study (LSS), other relevant published data and expert opinion. Results: Decision Analysis - Combined CT and AFB was the best approach at Improving 5-year survival (Overall Expected Survival (OES) in the entire screened population was 0.9863) and in lung cancer patients only (Lung Cancer Specific Expected Survival (LOSES) was 0.3256). Combined screening was slightly better than CT screening alone (OES = 0.9859; LCSES = 0.2966), and substantially better than AFB screening alone (OES = 0.9842; LCSES = 0.2124), which was considerably better than no screening (OES = 0.9829; LCSES = 0.1445). Monte Carlo simulation modeling revealed that expected survival in the screened population and lung cancer patients is highest when screened using CT and combined CT and AFB. CT alone and combined screening was substantially better than AFB screening alone or no screening. For LCSES, combined CT and AFB screening is significantly better than CT alone (0.3126 vs. 0.2938, p< 0.0001). Conclusions: Overall, these analyses suggest that combined CT and AFB is slightly better than CT alone at improving lung cancer survival, and both approaches are substantially better than AFB screening alone or no screening.