978 resultados para interferon


Relevância:

10.00% 10.00%

Publicador:

Resumo:

—Microarray-based global gene expression profiling, with the use of sophisticated statistical algorithms is providing new insights into the pathogenesis of autoimmune diseases. We have applied a novel statistical technique for gene selection based on machine learning approaches to analyze microarray expression data gathered from patients with systemic lupus erythematosus (SLE) and primary antiphospholipid syndrome (PAPS), two autoimmune diseases of unknown genetic origin that share many common features. The methodology included a combination of three data discretization policies, a consensus gene selection method, and a multivariate correlation measurement. A set of 150 genes was found to discriminate SLE and PAPS patients from healthy individuals. Statistical validations demonstrate the relevance of this gene set from an univariate and multivariate perspective. Moreover, functional characterization of these genes identified an interferon-regulated gene signature, consistent with previous reports. It also revealed the existence of other regulatory pathways, including those regulated by PTEN, TNF, and BCL-2, which are altered in SLE and PAPS. Remarkably, a significant number of these genes carry E2F binding motifs in their promoters, projecting a role for E2F in the regulation of autoimmunity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The incidence of inflammatory and autoimmune diseases has increased among developed countries in the past 30 years, creating a demand for the development of effective and economic therapies for these diseases. Interleukin 23 (IL-23) is a pro-inflammatory cytokine whose increased production has been shown to play a key role in the establishment and maintenance of inflammatory and autoimmune diseases in different murine models such as inflammatory bowel disease, psoriasis and experimental autoimmune encephalomyelitis. More importantly, increased levels of IL-23 have been found in biopsies from patients with Crohn’s disease and ulcerative colitis, and psoriasis. The pathological consequences of excessive IL-23 signalling have been linked to its ability to promote the production of interleukin 17 (IL-17), particularly in the subpopulation of CD4 T cells Th17. However, the precise molecular mechanisms by which IL-23 sustains the Th17 response and induces pathogenic effector functions in these cells remain largely unknown. The global objective of the experiments carried out in this work was to determine the effect of IL-23 on the proliferation, survival and IL-17 and interferon gamma (IFN-ɣ) production in Th17 cells. These experiments have shown that IL-23 does not promote proliferation or survival of in vitro generated Th17 cells, and that there is no difference in the production of IL -17 in the absence or presence of IL -23. The IL-23 receptor, like other cytokine receptors, lacks intrinsic enzymatic activity. Instead, IL-23 receptor associates with members of the Janus tyrosine kinase family (Jaks). Cytokine binding to a Jak-associated receptor triggers the activation of the Signal Transducers and Activators of Transcription (STAT) family of transcription factors. Previous work indicated that the IL-23 receptor complex is associated with the tyrosine kinases Jak2 and Tyk2 that promote STAT3 phosphorylation. Subsequent studies showed that IL23 activation of STAT3 induces the expression of the transcription factor RORγt, which is crucial for IL-17 production. This work has explored the IL-23 signalling cascade, determining the optimal conditions for STAT3 activation and demonstrating the activation of other transcription factors such as STAT4, STAT5 and STAT1 that contribute to IL-23-mediated signalling pathways.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The receptor 2B4 belongs to the Ig superfamily and is found on the surface of all murine natural killer (NK) cells as well as T cells displaying non-MHC-restricted cytotoxicity. Previous studies have suggested that 2B4 is an activating molecule because cross-linking of this receptor results in increased cytotoxicity and γ-interferon secretion as well as granule exocytosis. However, it was recently shown that the gene for 2B4 encodes two different products that arise by alternative splicing. These gene products differ solely in their cytoplasmic domains. One form has a cytoplasmic tail of 150 amino acids (2B4L) and the other has a tail of 93 amino acids (2B4S). To determine the function of each receptor, cDNAs for 2B4S and 2B4L were transfected into the rat NK cell line RNK-16. Interestingly, the two forms of 2B4 had opposing functions. 2B4S was able to mediate redirected lysis of P815 tumor targets, suggesting that this form represents an activating receptor. However, 2B4L expression led to an inhibition of redirected lysis of P815 targets when the mAb 3.2.3 (specific for rat NKRP1) was used. In addition, 2B4L constitutively inhibits lysis of YAC-1 tumor targets. 2B4L is a tyrosine phosphoprotein, and removal of domains containing these residues abrogates its inhibitory function. Like other inhibitory receptors, 2B4L associates with the tyrosine phosphatase SHP-2. Thus, 2B4L is an inhibitory receptor belonging to the Ig superfamily.