1000 resultados para hygienic behavior


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization behavior of two polypropylene (PP) resins as used for biaxially oriented polypropylene (BOPP) and general injection mold applications, respectively, has been intensively investigated and compared by means of polarized light optical micrography (POM), differential scanning calorimetry (DSC), conventional transmission electron microscopy (TEM), and high resolution transmission electron microscopy (HRTEM). It is found that both molecular weight distribution and isotacticity of polypropylene strongly affect its crystallization characteristics, e.g., the number of crystal nuclei at the initial stage, crystallization dynamics, the morphology, size and perfection of crystals in the final product, and so on. The results indicate an appropriate molecular structure is vital in producing high-quality BOPP film.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among complex oxides containing rare earth and manganese BaLn(2)Mn(2)O(7)( Ln = rare earth) with the layered perovskite type and Ln(2)(Mn, M)O-7 with pyrochlore-related structure were studied since these compounds show many kinds of phases and unique phase transitions. In BaLn(2)Mn(2)O(7) there appear many phases, depending on the synthetic conditions for each rare earth. The tetragonal phase of so-called Ruddlesden-Popper type is the fundamental structure and many kinds of deformed modification of this structure are obtained. For BaEu2Mn2O7 at least five phases have been identified from the results of X-ray diffraction analysis with the space group P4(2)/mnm, Fmmm, Immm and A2/m in addition to the fundamental tetragonal I4/mmm phase. In the pyrochlore-related type compounds, Ln(2)Mn(2-x)M(x)O(7)(M = Ta, Nb, W etc), there also appear several phases With different crystal structures. With regard to every rare earth, Ln(2)MnTaO(7) phase is stable only for excess Ta and can be obtained under high oxygen partial pressure process. This group has trigonal structure with zirkelite type ( P3(1)21 space group).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many phases appear in BaLn(2)Mn(2)O(7) family (Ln = rare earth) belonging to one of the Ruddlesden-Popper type compounds, depending upon the experimental conditions such as heating conditions when prepared and composition. Some of these phases were characterized by powder X-ray diffraction method using Rietveld analysis. These phases have only a little difference in crystal structure which has fundamentally K2NiF4 type structure, although the X-ray diffraction patterns are clearly different: a little deformation or tilting of the oxygen octahedron surrounding a central manganese ion composing the main frame of this structure induce these different diffraction patterns. Phase behavior of these compounds, mainly the detailed relation between various phases in BaTb2Mn2O7, was refined including the data of high temperature X-ray diffractometry.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization and melting behavior of poly(beta-hydroxybutyrate-co-beta-hydroxyvalerate) (PHBV) and a 30/70 (w/w) PHBV/poly(propylene carbonate) (PPC) blend was investigated with differential scanning calorimetry (DSC) and Fourier transform infrared (FTIR). The transesterification reaction between PHBV and PPC was detected in the melt-blending process. The interaction between the two macromolecules was confirmed by means of FTIR analysis. During the crystallization process from the melt, the crystallization temperature of the PHBV/PPC blend decreased about 8 degreesC, the melting temperature was depressed by 4 degreesC, and the degree of crystallinity of PHBV in the blend decreased about 9.4%; this was calculated through a comparison of the DSC heating traces for the blend and pure PHBV. These results indicated that imperfect crystals of formed, crystallization was inhibited, and the crystallization ability of PHBV was weakened in the blend. The equilibrium melting temperatures of PHBV and the 30/70 PHBV/PPC blend isothermally crystallized were 187.1 and 179 degreesC, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of nickel(II) complexes bearing two nonsymmetric bidentate beta-ketoiminato chelate ligands have been prepared, and the structures of complexes [(2,6-Me2C6H3)NC(CH3)C(H)C(Ph)O](2)Ni (4a) and [(2,6-Me2C6H3)NC(CH3)C(H)C(CF3)O](2)Ni (4c) have been confirmed by X-ray crystallographic analysis. These nickel(II) complexes were investigated as catalysts for the vinylic polymerization of norbornene. Using modified methylaluminoxane (MMAO) as a cocatalyst, these complexes display very high activities and produce high molecular weight polymers. Catalytic activity of up to 1.16 x 10(4) kg/mol(Ni) .h and the viscosity-average molecular 9 weight of polymer of up to 870 kg/mol were observed. Catalyst activity, polymer yield, and polymer molecular weight could be controlled over a wide range by the variation of the reaction parameters such as Al/Ni molar ratio, norbornene/catalyst molar ratio, monomer concentration, polymerization reaction temperature and time.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A series of neutral palladium(II) complexes bearing non-symmetric bidentate pyrrole-iminato or salicylaldiminato chelate ligands have been synthesized, and the structure of representative complexes (3a, 4a, and 5a) have been confirmed by X-ray crystallographic analysis. These palladium complexes have been investigated as catalysts for the polymerization of norbornene. Using modified methylaluminoxane (MMAO) as a cocatalyst, these complexes display high activities and produce vinyl-addition polynorborenes. Catalytic activity of up to 8.52 x 10(3) kg/mol(Pd) h has been observed. Wide-angle X-ray diffraction (WAXD) has been used to investigate the polymer microstructure and it has been found that they are non-crystalline.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Three series of tensile tests with constant cross-head speeds (ranging from 5 to 200 mm/min), tensile relaxation tests (at strains from 0.03 to 0.09) and tensile creep tests (at stresses from 2.0 to 6.0 MPa) are performed on low-density polyethylene at room temperature. Constitutive equations are derived for the time-dependent response of semicrystalline polymers at isothermal deformation with small strains. A polymer is treated as an equivalent heterogeneous network of chains bridged by temporary junctions (entanglements, physical cross-links and lamellar blocks). The network is thought of as an ensemble of meso-regions linked with each other. The viscoelastic behavior of a polymer is modelled as thermally-induced rearrangement of strands (separation of active strands from temporary junctions and merging of dangling strands with the network). The viscoplastic response reflects mutual displacement of meso-domains driven by macro-strains. Stress-strain relations for uniaxial deformation are developed by using the laws of thermodynamics. The governing equations involve five material constants that are found by fitting the observations. Fair agreement is demonstrated between the experimental data and the results of numerical simulation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The partitioning behavior of four amino acids, cysteine, phenylalanine, methionine, and lysine in 15 aqueous two-phase systems (ATPSs) with different polyethylene glycol (PEG) molecular weights and phosphate buffers has been studied in the present paper. The phase diagrams of the systems are investigated together with the effect of the PEG molecular weight and pH of the phosphate solutions. The composition of these systems and some parameters such as density and refractive index are determined. The influences of salts in ATPSs, side chain structure of the amino acids, pH of ATPSs, and the PEG molecular weight on the distribution ratios of the amino acids have been studied. This work is useful for the purification of amino acids and the separation of some proteins whose main surface exposed amino acid residues are these four amino acids, respectively.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effects of three triblock copolymers of poly [styrene-b-(ethylene-co-butylene)-b-styrene] (SEBS) of different molecular weight (MW) on the morphology, tensile strength and thermal behavior of isotactic polypropylene/syndiotactic polystyrene (iPP/sPS, 80/20) blend are investigated. Morphology observation shows that both the medium MW and the lower MW SEBS are more effective than the higher MW SEBS in compatibilizing the blends. Tensile tests revels both the medium and low MW compatibilizer lead to a significant improvement in tensile strength, while the higher MW compatibilizer is efficient in increasing the elongation at break of the blends. The localization of compatibilizers in the blends is observed by mean of SEM and the correlation between the distribution of the compatibilizers and mechanical properties of the blends is evaluated. The mechanical properties of the iPP/sPS blends depend on not only the interfacial activity of the compatibilizers but also the distribution of the compatibilizer in the blend. Addition of the compatibilizers to the blend causes a remarkable decrease in the magnitude of the crystallization peak of sPS at its usual T-c. Vicat softening points demonstrate that the heat resistance of iPP/sPS blend is much higher than that of the pure iPP.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

High-density polyethylene with shish-kebab structure, prepared by a melt extrusion drawing, was employed to investigate the effect of the well-defined lamellar orientation on the deformation characteristics under uniaxial tensile deformation along the drawing direction. This was done by investigating the true stress-true strain dependencies at different strain rates, recovery properties, and stress relaxation measurements. Measurements were complemented by recording in-situ wide-angle X-ray scattering patterns during the deformation process. The oriented samples showed not only a higher modulus, but different from analogous isotropic samples, a homogeneous deformation without necking. The true strain associated with the onset of fibrillation was determined. Because of the preorientation, it is shifted to 0.3, which is below the value 0.6 of the isotropic counterpart. The main finding is a strong enhancement of the Viscous force, as was revealed by stress relaxation experiments; the viscous force takes up 70% of the total stress. The presence of shish-kebabs, i.e., interconnected lamellae in a stack, seems to be responsible for the high viscous force in the oriented samples. The absence of necking has to be ascribed to the high viscous force.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The crystallization behavior and morphology of the crystalline-crystalline poly(ethylene oxide)-poly(epsilon-caprolactone) diblock copolymer (PEO-b-PCL) was studied by differential scanning calorimetry (DSC), wide-angle X-ray diffraction (WAXD), Fourier transform infrared spectroscopy (FTIR), small-angle X-ray scattering (SAXS), and hot-stage polarized optical microscope (POM). The mutual effects between the PEO and PCL blocks were significant, leading to the obvious composition dependence of the crystallization behavior and morphology of PEO-b-PCL. In this study, the PEO block length was fixed (M-n = 5000) and the weight ratio of PCL/PEO was tailored by changing the PCL block length. Both blocks could crystallize in PEO-b-PCL with the PCL weight fraction (WFPCL) of 0.23-0.87. For the sample with the WFPCL of 0.36 or less, the PEO block crystallized first, resulting in the obvious confinement of the PCL block and vice versa for the sample with WFPCL of 0.43 or more. With increasing WFPCL, the crystallinity of PEO reduced continuously while the variation of the PCL crystallinity exhibited a maximum. The long period of PEO-b-PCL increased with increasing WFPCL from 0.16 to 0.50 but then decreased with the further increase of WFPCL due to the interaction of the respective variation of the thicknesses of the PEO and PCL crystalline lamellae.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Stable electroactive film of poly(aniline-co-o-aminobenzenesulfonic acid) three-dimensional tubal net-works was assembled on indium oxide glass (ITO) successfully, and the cytochrome c was immobilized on the matrix by the electrostatic interactions. The adsorbed cytochrome c showed a good electrochemical activity with a pair of well-defined redox waves in pH 6.2 phosphate buffer solution, and the adsorbed protein showed more faster electron transfer rate (12.9 s(-1)) on the net-works matrix than those of on inorganic porous or even nano-materials reported recently. The immobilized cytochrome c exhibited a good electrocatalytic activity and amperometric response (2 s) for the reduction of hydrogen peroxide (H2O2). The detection limit for H2O2 was 1.5 mu M, and the linear range was from 3 mu M to 1 mM. Poly(aniline-co-o-aminobenzenesulfonic acid) three-dimensional tubal net-works was proved to be a good matrix for protein immobilization and biosensor preparation.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Crystallization and phase behavior in solution-cast thin films of crystalline syndiotactic 1,2-polybutadiene (s-1,2-PB) and isotactic polypropylene (i-PP) blends have been investigated by transmission electron microscopy (TEM), atomic force microscopy (AFM) and field-emission scanning electron microscopy (FESEM) techniques. Thin films of pure s-1,2-PB consist of parallel lamellae with the c-axis perpendicular to the film plane and the lateral scale in micrometer size, while those of i-PP are composed of cross-hatched and single-crystal-like lamellae. For the blends, TEM and AFM observations show that with addition of i-PP, the s-1,2-PB long lamellae become bended and i-PP itself tends to form dispersed convex regions oil a continuous s-1,2-PB phase even when i-PP is the predominant component, which indicates a strong phase separation between the two polymers during film formation. FESEM micrographs of both lower and upper surfaces of the films reveal that the s-1,2-PB lamellae pass through i-PPconvex regions from the bottom, i.e. the dispersed i-PP regions lie on the continuous s-1,2-PB phase. The structural development is attributed to an interplay of crystallization and phase separation of the blends in the film forming process.