977 resultados para geological


Relevância:

10.00% 10.00%

Publicador:

Resumo:

There has been a growing concern about the use of fossil fuels and its adverse effects on the atmospheric greenhouse and ecological environment. A reduction in the release rate of CO2 into the atmosphere poses a major challenge to the land ecology of China. The most promising way of achieving CO2 reduction is to dispose of CO2 in deep saline aquifers. Deep aquifers have a large potential for CO2 sequestration in geological medium in terms of volume and duration. Through the numerical simulation of multiphase flow in a porous media, the transformation and motion of CO2 in saline aquifers has been implemented under various temperature and hydrostatic pressure conditions, which plays an important role to the assessment of the reliability and safety of CO2 geological storage. As expected, the calculated results can provide meaningful and scientific information for management purposes. The key problem to the numerical simulation of multiphase flow in a porous media is to accurately capture the mass interface and to deal with the geological heterogeneity. In this study, the updated CE/SE (Space and time conservation element and solution element) method has been proposed, and the Hybrid Particle Level Set method (HPLS) has extended for multiphase flows in porous medium, which can accurately trace the transformation of the mass interface. The benchmark problems have been applied to evaluate and validate the proposed method. In this study, the reliability of CO2 storage in saline aquifers in Daqingzi oil field in Sunlong basin has been discussed. The simulation code developed in this study takes into account the state for CO2 covering the triple point temperature and pressure to the supercritical region. The geological heterogeneity has been implemented, using the well known geostatistical model (GSLIB) on the base of the hard data. The 2D and 3D model have been set up to simulate the CO2 multiphase flow in the porous saline aquifer, applying the CE/SE method and the HPLS method .The main contents and results are summarized as followings. (1) The 2D CE/SE method with first and second –order accuracy has been extended to simulate the multiphase flow in porous medium, which takes into account the contribution of source and sink in the momentum equation. The 3D CE/SE method with the first accuracy has been deduced. The accuracy and efficiency of the proposed CE/SE method have been investigated, using the benchmark problems. (2) The hybrid particle level set method has been made appropriate and extended for capturing the mass interface of multiphase flows in porous media, and the numerical method for level set function calculated has been formulated. (3) The closed equations for multiphase flow in porous medium has been developed, adept to both the Darcy flow and non-Darcy flow, getting over the limitation of Reynolds number to the calculation. It is found that Darcy number has a decisive influence on pressure as well as velocity given the Darcy number. (4) The new Euler scheme for numerical simulations of multiphase flows in porous medium has been proposed, which is efficient and can accurately capture the mass interface. The artificial compressibility method has been used to couple the velocities and pressure. It is found that the Darcy number has determinant effects on the numerical convergence and stability. In terms of the different Darcy numbers, the coefficient of artificial compressibility and the time step have been obtained. (5) The time scale of the critical instability for critical CO2 in the saline aquifer has been found, which is comparable with that of completely CO2 dissolved saline aquifer. (6) The concept model for CO2 multiphase flows in the saline aquifer has been configured, based on the temperature, pressure, porosity as well as permeability of the field site .Numerical simulation of CO2 hydrodynamic trapping in saline aquifers has been performed, applying the proposed CE/SE method. The state for CO2 has been employed to take into account realistic reservoir conditions for CO2 geological sequestration. The geological heterogeneity has been sufficiently treated , using the geostatistical model. (7) It is found that the Rayleigh-Taylor instability phenomenon, which is associated with the penetration of saline fluid into CO2 fluid in the direction of gravity, has been observed in CO2 multiphase flows in the saline aquifer. Development of a mushroom-type spike is a strong indication of the formation of Kelvin-Helmholtz instability due to the developed short wavelength perturbations present along the interface and parallel to the bulk flow. Additional key findings: the geological heterogeneity can distort the flow convection. The ascending of CO2 can induce the persistent flow cycling effects. The results show that boundary conditions of the field site have determinant effects on the transformation and motion of CO2 in saline aquifers. It is confirmed that the proposed method and numerical model has the reliability to simulate the process of the hydrodynamic trapping, which is the controlling mechanism for the initial period of CO2 storage at time scale of 100 years.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Slide-debris flow is debris flow which is transformed from landslide consecutively in a short time, it comprises of two phases: First, Landslide starts to slide; Second, landslide changes to debris flow. Slide-debris flow which brings great property and life loss happens frequently at home and abroad. In order to forecast the happening possibility and scope of slide-debris flow, transfromation mechanism of Slide-debris flow must be studied. Research on transformation mechanism of slide-debris flow is intersectant science of landslide kinetics and debris flow starting theory, It is a fringe problem as well as front problem of geological hazard. This paper takes Qingning slide-debris flow in Da County, Sichuan Province for example and has studied the mechanism of its instability and transfromation into debris flow through indoor test (including usual soil test and ring shear test) and digital modeling method.The research gets the following conclusions. Qingning Landslide took place mainly because of confined water head arising from rainfall infiltration. Before Landslide occurring, it rained continuously for 22 days, accumulated precipitation arrived at 521.6mm.Investigation shows that strata of Qingning Landslide contains quaternary loose accumulation, slip soil and highly weathered bedrock, which is a good condition for formation of confined water in the slope. Further more, groundwater seepage in the slope body and corresponding slope safety factor before landslide occurring have been computed through finite element method. The result shows that because of infiltration of rainfall, confined water head in the slope arose sharply, accordingly, the safety factor of the slope declined quickly. The result also shows that force put on the slide body by the rock mass detached from Dazhaiyan mountain was the direct factor for landslide occurring. Qingning slide-debris transformation mode has been summarized, the process the landslide changed into debris flow is divided into three phases in the prospective of macroscopic geological condition: landslide occurring, transformation and debris flow. Landslide occurring phase is from slope’ local creeping slide to Landslide occurring; transformation phase contains slide body sliding on the slide bed after slide occurring and sliding on the slope after shearing opening; debris flow phase is that slide body breaks up completely and flows downward into the ditches. The transformation mechanism of Qingning slide-debris flow has been studied through indoor ring shear test of slip soil. The result shows that transformation mechanism contains two points: first, during slide body sliding on the slide bed and slope after shearing opening, shearing shrinkage, grain crushing and grain layering brought about declining of its volume and produced excess pore water pressure, and because producing velocity of excess pore water pressure is much greater than its dissipating velocity, shear strength of slide body decreased sharply because of accumulated pore water pressure. Second, grains crushing and grains layering during slide body sliding brought about thick liquefied layer at the bottom of the slidebody, liquefied layer contained high water content and its shear strength was very low, its thickness increased as the sliding displacement increasing. Liquefied layer makes slide body sliding fast and easily break down to debris flow. Excess pore water pressure and liquefied layer made shear strength of slidebody became very low, furthermore, water in the pit of slope joining in the slidebody was also a facter that made slidebody accelerate the transformation. Influence of slide body thickness and fine grains content to transformation of slide-debris flow has been studied through ring shear test. The result reaches two conclusions. First, thickness of slide body affects transformation of slide-debris flow by two ways, porewater pressure and effect of “soft base” increases as thickness of slide body increasing.so the thicker slide body is ,the easier transformation is. Second, actual dissipating velocity of porewater pressure should be considered when studying the influence of fine grains content to tranformation of slide-debris flow. There should be a critical content of fine grains which makes the difference of producing and dissipating velocity of water pore pressre greatest, this value is the best for slide-debris transformation. The whole process of slide-debris flow transformation is reproduced through discrete element method. Transformation mechanism of slide-debris flow is studied through monitoring various parameters including pore water pressure, grain crushing and grain layering in the slide body during the transformation. The result confirms and supplements the transformation mechanism of slide-debris flow got from ring shear test well.