982 resultados para food packaging
Resumo:
This work analyzes the relationship between large food webs describing potential feeding relations between species and smaller sub-webs thereof describing relations actually realized in local communities of various sizes. Special attention is given to the relationships between patterns of phylogenetic correlations encountered in large webs and sub-webs. Based on the current theory of food-web topology as implemented in the matching model, it is shown that food webs are scale invariant in the following sense: given a large web described by the model, a smaller, randomly sampled sub-web thereof is described by the model as well. A stochastic analysis of model steady states reveals that such a change in scale goes along with a re-normalization of model parameters. Explicit formulae for the renormalized parameters are derived. Thus, the topology of food webs at all scales follows the same patterns, and these can be revealed by data and models referring to the local scale alone. As a by-product of the theory, a fast algorithm is derived which yields sample food webs from the exact steady state of the matching model for a high-dimensional trophic niche space in finite time. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
Food webs of habitats as diverse as takes or desert valleys are known to exhibit common
Resumo:
We present a mathematical analysis of the speciation model for food-web structure, which had in previous work been shown to yield a good description of empirical data of food-web topology. The degree distributions of the network are derived. Properties of the speciation model are compared to those of other models that successfully describe empirical data. It is argued that the speciation model unities the underlying ideas of previous theories. In particular, it offers a mechanistic explanation for the success of the niche model of Williams and Martinez and the frequent observation of intervality in empirical food webs. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
Food webs are networks describing who is eating whom in an ecological community. By now it is clear that many aspects of food-web structure are reproducible across diverse habitats, yet little is known about the driving force behind this structure. Evolutionary and population dynamical mechanisms have been considered. We propose a model for the evolutionary dynamics of food-web topology and show that it accurately reproduces observed food-web characteristics in the steady state. It is based on the observation that most consumers are larger than their resource species and the hypothesis that speciation and extinction rates decrease with increasing body mass. Results give strong support to the evolutionary hypothesis. (C) 2005 Elsevier B.V. All rights reserved.
Resumo:
The large range of body-mass values of soil organisms provides a tool to assess the ecological organization of soil communities. The goal of this paper is to identify graphical and quantitative indicators of soil community composition and ecosystem functioning, and to illustrate their application to real soil food webs. The relationships between log-transformed mass and abundance of soil organisms in 20 Dutch meadows and heathlands were investigated. Using principles of allometry, maximal use can be made of ecological theory to build and explain food webs. The aggregate contribution of small invertebrates such as nematodes to the entire community is high under low soil phosphorus content and causes shifts in the mass-abundance relationships and in the trophic structures. We show for the first time that the average of the trophic link lengths is a reliable predictor for assessing soil fertility responses. Ordered trophic link pairs suggest a self-organizing structure of food webs according to resource availability and can predict environmental shifts in ecologically meaningful ways.