990 resultados para flow separation
Resumo:
An effective method for the rapid separation and purification of three stilbenes from the radix of Polygonum cillinerve (Nakai) Ohwl by macroporous resin column chromatography combined with high-speed counter-current chromatography (HSCCC) was successfully established. In the present study, a two-phase solvent system composed of chloroform-n-butanol-methanol-water (4:1:4:2, v/v/v/v) was used for HSCCC separation. A one-step separation in 4 h from 150 mg of crude extract produced 26.3 mg of trans-resveratrol-3-O-glucoside, 42.0 mg of pieceid-2"-O-gallate, and 17.9 mg of trans-resveratrol with purities of 99.1%, 97.8%, and 99.4%, respectively, as determined by high-performance liquid chromatography (HPLC). The chemical structures of these compounds were identified by nuclear magnetic resonance (NMR) spectroscopy.
Resumo:
AbstractA device comprising a lab-made chamber with mechanical stirring and computer-controlled solenoid valves is proposed for the mechanization of liquid-liquid extractions. The performance was demonstrated by the extraction of ethanol from biodiesel as a model of the extraction of analytes from organic immiscible samples to an aqueous medium. The volumes of the sample and extractant were precisely defined by the flow-rates and switching times of the valves, while the mechanic stirring increased interaction between the phases. Stirring was stopped for phase separation, and a precise time-control also allowed a successful phase separation (i.e., the absence of the organic phase in the aqueous extract). In the model system, a linear response between the analytical response and the number of extractions was observed, indicating the potential for analyte preconcentration in the extract. The efficiency and reproducibility of the extractions were demonstrated by recoveries of ethanol spiked to biodiesel samples within 96% and 100% with coefficients of variation lower than 3.0%.
Resumo:
Virtually every cell and organ in the human body is dependent on a proper oxygen supply. This is taken care of by the cardiovascular system that supplies tissues with oxygen precisely according to their metabolic needs. Physical exercise is one of the most demanding challenges the human circulatory system can face. During exercise skeletal muscle blood flow can easily increase some 20-fold and its proper distribution to and within muscles is of importance for optimal oxygen delivery. The local regulation of skeletal muscle blood flow during exercise remains little understood, but adenosine and nitric oxide may take part in this process. In addition to acute exercise, long-term vigorous physical conditioning also induces changes in the cardiovasculature, which leads to improved maximal physical performance. The changes are largely central, such as structural and functional changes in the heart. The function and reserve of the heart’s own vasculature can be studied by adenosine infusion, which according to animal studies evokes vasodilation via it’s a2A receptors. This has, however, never been addressed in humans in vivo and also studies in endurance athletes have shown inconsistent results regarding the effects of sport training on myocardial blood flow. This study was performed on healthy young adults and endurance athletes and local skeletal and cardiac muscle blod flow was measured by positron emission tomography. In the heart, myocardial blood flow reserve and adenosine A2A receptor density, and in skeletal muscle, oxygen extraction and consumption was also measured. The role of adenosine in the control of skeletal muscle blood flow during exercise, and its vasodilator effects, were addressed by infusing competitive inhibitors and adenosine into the femoral artery. The formation of skeletal muscle nitric oxide was also inhibited by a drug, with and without prostanoid blockade. As a result and conclusion, it can be said that skeletal muscle blood flow heterogeneity decreases with increasing exercise intensity most likely due to increased vascular unit recruitment, but exercise hyperemia is a very complex phenomenon that cannot be mimicked by pharmacological infusions, and no single regulator factor (e.g. adenosine or nitric oxide) accounts for a significant part of exercise-induced muscle hyperemia. However, in the present study it was observed for the first time in humans that nitric oxide is not only important regulator of the basal level of muscle blood flow, but also oxygen consumption, and together with prostanoids affects muscle blood flow and oxygen consumption during exercise. Finally, even vigorous endurance training does not seem to lead to supranormal myocardial blood flow reserve, and also other receptors than A2A mediate the vasodilator effects of adenosine. In respect to cardiac work, atheletes heart seems to be luxuriously perfused at rest, which may result from reduced oxygen extraction or impaired efficiency due to pronouncedly enhanced myocardial mass developed to excel in strenuous exercise.
Resumo:
Diplomityössä käsitellään ydinvoimalaitoksen kostean höyryn alueella toimivien höyryturbiinien toiminnan erityispiirteitä. Tarkemmin työssä keskitytään Loviisan ydinvoimalaitoksen turbiiniprosessiin. Tavoitteena on selvittää veden tiivistymistä höyryvirrassa, sen erotusta höyrystä turbiineissa sekä määrittää laitokselle todellinen paisuntakäyrä. Työssä selvitettiin veden tiivistymistä höyryvirtaan kirjallisuuden ja prosessista saatujen tietojen perusteella. Lisäksi työssä tutustuttiin suurien nykyaikaisten kostean höyryn alueella toimivien turbiinien vedenerotukseen ja sen pohjalta arvioitiin Loviisan ydinvoimalaitoksen turbiinin kosteudenerotusta. Näiden tietojen avulla saatiin mallinnettua kostean höyryn paisuntakäyrä Loviisan ydinvoimalaitoksen turbiineille. Työssä perehdyttiin lisäksi ulosvirtauskanavan toimintaan. Diplomityön puitteissa ei perehdytty yksityiskohtaisesti veden tiivistymiseen höyryvirrassa, vaan aihe ansaitsee tarkempaa tutkimusta. Kosteuden erotustehokkuuden arviointi todellisessa prosessissa ilman mittauksista saatavaa tietoa on vaikeata, mutta toimenpiteisiin lisäinformaation saamiseksi Loviisan ydinvoimalaitoksen turbiiniprosessista on ryhdytty. Työssä tehtyjen selvitysten avulla saatiin arvokasta tietoa turbiinikoneikon toiminnasta ja sen tehokkuuden parantamisesta.
Resumo:
Determination of the viability of bacteria by the conventional plating technique is a time-consuming process. Methods based on enzyme activity or membrane integrity are much faster and may be good alternatives. Assessment of the viability of suspensions of the plant pathogenic bacterium Clavibacter michiganensis subsp. michiganensis (Cmm) using the fluorescent probes Calcein acetoxy methyl ester (Calcein AM), carboxyfluorescein diacetate (cFDA), and propidium iodide (PI) in combination with flow cytometry was evaluated. Heat-treated and viable (non-treated) Cmm cells labeled with Calcein AM, cFDA, PI, or combinations of Calcein AM and cFDA with PI, could be distinguished based on their fluorescence intensity in flow cytometry analysis. Non-treated cells showed relatively high green fluorescence levels due to staining with either Calcein AM or cFDA, whereas damaged cells (heat-treated) showed high red fluorescence levels due to staining with PI. Flow cytometry also allowed a rapid quantification of viable Cmm cells labeled with Calcein AM or cFDA and heat-treated cells labeled with PI. Therefore, the application of flow cytometry in combination with fluorescent probes appears to be a promising technique for assessing viability of Cmm cells when cells are labeled with Calcein AM or the combination of Calcein AM with PI.
Resumo:
A flow injection spectrophotometric procedure with on-line solid-phase reactor containing ion triiodide immobilized in an anion-exchange resin is proposed for the determination of adrenaline (epinephrine) in pharmaceutical products. Adrenaline is oxidized by triiodide ion immobilized in an anionic-exchange resin yielding adrenochrome which is transported by the carrier solution and detected at a wavelength of 488 nm. Adrenaline was determined in three pharmaceutical products in the 6.4 x 10-6 to 3.0 x 10-4 mol L-1 concentration range with a detection limit of 4.8 x 10-7 mol L-1. The recovery of this analyte in three samples ranged from 96.0 to 105 %. The analytical frequency was 80 determinations per hour and the RSDs were less than 1 % for adrenaline concentrations of 6.4 x 10-5 and 2.0 x 10-4 mol L-1 (n=10). A paired t-test showed that all results obtained for adrenaline in commercial formulations using the proposed flow injection procedure and a spectrophotometric batch procedure agree at the 95% confidence level.
Resumo:
A photometric flow titration based on the redox reaction between KMnO4 and minoxidil is described. The best titration results were observed at 3.20 x 10-4 mol L-1 KMnO4 and 1.00 x 10-3 mol L-1 minoxidil, using the minoxidil solutions as titrant. The flow rate was fixed at 17 mL min-1 and the titrant was added to the system in aliquots of 500 µL, the color changes were monitored at 550 nm. The method was applied to commercial samples and compared with the results from a chromatographic procedure. Recoveries from 97.6 to 102.8 % were observed depending on the sample. Comparison with the chromatographic procedure reveled relative errors of 3.5 - 4.0 %.
Resumo:
Supersonic axial turbine stages typically exhibit lower efficiencies than subsonic axial turbine stages. One reason for the lower efficiency is the occurrence of shock waves. With higher pressure ratios the flow inside the turbine becomes relatively easily supersonic if there is only one turbine stage. Supersonic axial turbines can be designed in smaller physical size compared to subsonic axial turbines of same power. This makes them good candidates for turbochargers in large diesel engines, where space can be a limiting factor. Also the production costs are lower for a supersonic axial turbine stage than for two subsonic stages. Since supersonic axial turbines are typically low reaction turbines, they also create lower axial forces to be compensated with bearings compared to high reaction turbines. The effect of changing the stator-rotor axial gap in a small high (rotational) speed supersonic axial flow turbine is studied in design and off-design conditions. Also the effect of using pulsatile mass flow at the supersonic stator inlet is studied. Five axial gaps (axial space between stator and rotor) are modeled using threedimensional computational fluid dynamics at the design and three axial gaps at the off-design conditions. Numerical reliability is studied in three independent studies. An additional measurement is made with the design turbine geometry at intermediate off-design conditions and is used to increase the reliability of the modelling. All numerical modelling is made with the Navier-Stokes solver Finflo employing Chien’s k ¡ ² turbulence model. The modelling of the turbine at the design and off-design conditions shows that the total-to-static efficiency of the turbine decreases when the axial gap is increased in both design and off-design conditions. The efficiency drops almost linearily at the off-design conditions, whereas the efficiency drop accelerates with increasing axial gap at the design conditions. The modelling of the turbine stator with pulsatile inlet flow reveals that the mass flow pulsation amplitude is decreased at the stator throat. The stator efficiency and pressure ratio have sinusoidal shapes as a function of time. A hysteresis-like behaviour is detected for stator efficiency and pressure ratio as a function of inlet mass flow, over one pulse period. This behaviour arises from the pulsatile inlet flow. It is important to have the smallest possible axial gap in the studied turbine type in order to maximize the efficiency. The results for the whole turbine can also be applied to some extent in similar turbines operating for example in space rocket engines. The use of a supersonic stator in a pulsatile inlet flow is shown to be possible.
Resumo:
A flow-injection system with sample and reagent addition by the synchronous merging zones approach for calcium determination in milk by flame AAS is proposed. Main parameters were optimized using a factorial design with central point. The optimum conditions were 2.5% (m/v) for La concentration, 8 mL min-1 for the carrier flow-rate, 20 cm for coiled reactor and 250 ìL for sample volume. Different sample preparation procedures were evaluated such as dilution in water or acid and microwave-assisted decomposition using concentrated or diluted acids. The optimized flow system was applied to determine Ca in eleven commercial milk samples and two standard reference materials diluted in water. Similar calcium levels were encountered comparing the results obtained by the proposed method (dilution in water) with those obtained using microwave-oven digestion. Results obtained in two standard reference materials were in agreement at 95% confidence level with those certified. Recoveries of spiked samples were in the 93% - 116% range. Relative standard deviation (n = 12) was < 5.4% and the sample throughput was 150 measurements per hour, corresponding to a consumption of 250 µL of sample and 6.25 mg La per determination.
Resumo:
Blood flow in human aorta is an unsteady and complex phenomenon. The complex patterns are related to the geometrical features like curvature, bends, and branching and pulsatile nature of flow from left ventricle of heart. The aim of this work was to understand the effect of aorta geometry on the flow dynamics. To achieve this, 3D realistic and idealized models of descending aorta were reconstructed from Computed Tomography (CT) images of a female patient. The geometries were reconstructed using medical image processing code. The blood flow in aorta was assumed to be laminar and incompressible and the blood was assumed to be Newtonian fluid. A time dependent pulsatile and parabolic boundary condition was deployed at inlet. Steady and unsteady blood flow simulations were performed in real and idealized geometries of descending aorta using a Finite Volume Method (FVM) code. Analysis of Wall Shear Stress (WSS) distribution, pressure distribution, and axial velocity profiles were carried out in both geometries at steady and unsteady state conditions. The results obtained in thesis work reveal that the idealization of geometry underestimates the values of WSS especially near the region with sudden change of diameter. However, the resultant pressure and velocity in idealized geometry are close to those in real geometry
Resumo:
The objective of the work is to study fluid flow behavior through a pinch valve and to estimate the flow coefficient (KV ) at different opening positions of the valve. The flow inside a compressed valve is more complex than in a straight pipe, and it is one of main topics of interest for engineers in process industry. In the present work, we have numerically simulated compressed valve flow at different opening positions. In order to simulate the flow through pinch valve, several models of the elastomeric valve tube (pinch valve tube) at different opening positions were constructed in 2D-axisymmetric and 3D geometries. The numerical simulations were performed with the CFD packages; ANSYS FLUENT and ANSYS CFX by using parallel computing. The distributions of static pressure, velocity and turbulent kinetic energy have been studied at different opening positions of the valve in both 2D-axisymmetric and 3D experiments. The flow coefficient (KV ) values have been measured at different valve openings and are compared between 2D-axisymmetric and 3D simulation results.
Resumo:
A spectrophotometric flow injection method for the determination of paracetamol in pharmaceutical formulations is proposed. The procedure was based on the oxidation of paracetamol by sodium hypochloride and the determination of the excess of this oxidant using o-tolidine dichloride as chromogenic reagent at 430 nm. The analytical curve was linear in the paracetamol concentration range from 8.50 x 10-6 to 2.51 x 10-4 mol L-1 with a detection limit of 5.0 x 10-6 mol L-1. The relative standard deviation was smaller than 1.2% for 1.20 x 10-4 mol L-1 paracetamol solution (n = 10). The results obtained for paracetamol in pharmaceutical formulations using the proposed flow injection method and those obtained using a USP Pharmacopoeia method are in agreement at the 95% confidence level.
Resumo:
A flow injection method for the quantitative analysis of vancomycin hydrochloride, C66H75Cl2N9O24.HCl (HVCM), based on the reaction with copper (II) ions, is presented. HVCM forms a lilac-blue complex with copper ions at pH≅4.5 in aqueous solutions, with maximum absorption at 555 nm. The detection limit was estimated to be about 8.5×10-5 mol L-1; the quantitation limit is about 2.5×10-4 mol L-1 and about 30 determinations can be performed in an hour. The accuracy of the method was tested through recovery procedures in presence of four different excipients, in the proportion 1:1 w/w. The results were compared with those obtained with the batch spectrophotometric and with the HPLC methods. Statistical comparison was done using the Student's procedure. Complete agreement was found at a 0.95 significance level between the proposed flow injection and the batch spectrophotometric methods, which present similar precision (RSD: 2.1 % vs. 1.9%).
Resumo:
Kemira Chemicals Oy in Äetsä produces sodium chlorate as its main product. It is produced with electrolysis in electrolyte cells. During the manufacturing process impurities, out of which the largest one is iron, accumulate in the cells. These impurities are removed in cell wash with hydrochloric acid liquid, after which the wash water is precipitated with sodium hydroxide and sodium carbonate, and filtered with filter press. After the treatment the wash water is recycled back to the manufacturing process. The aim of this thesis was primarily to improve the treatment of wash water in order to remove the impurities with low costs. This would result in more impurity-free water and in sufficient capacity of impurity removal. The second aim was to maintain the chromium in the treated wash water because it forms a diaphragm of chromium hydroxide to cathode which prevents the flow of anions to cathode. The literature part investigates properties, use and manufacturing of sodium chlorate, electrolyte cell and its wash technique, and impurities of wash water. The beginning of the applied part investigates alternatives of separation methods which could be used to improve the treatment of wash water. In the experiments an optimum pH for the precipitation of wash water was determined, and a research of the use of sodium hydroxide, sodium carbonate, calcium hydroxide and calcium chloride as a precipitant was carried out. Also a suitable flocculant and a filter cloth for the treatment of wash water were determined. Finally, process changes were introduced, partly by applying the current equipment, and the costs and savings were calculated.