983 resultados para flood fatality
A model-based assessment of the effects of projected climate change on the water resources of Jordan
Resumo:
This paper is concerned with the quantification of the likely effect of anthropogenic climate change on the water resources of Jordan by the end of the twenty-first century. Specifically, a suite of hydrological models are used in conjunction with modelled outcomes from a regional climate model, HadRM3, and a weather generator to determine how future flows in the upper River Jordan and in the Wadi Faynan may change. The results indicate that groundwater will play an important role in the water security of the country as irrigation demands increase. Given future projections of reduced winter rainfall and increased near-surface air temperatures, the already low groundwater recharge will decrease further. Interestingly, the modelled discharge at the Wadi Faynan indicates that extreme flood flows will increase in magnitude, despite a decrease in the mean annual rainfall. Simulations projected no increase in flood magnitude in the upper River Jordan. Discussion focuses on the utility of the modelling framework, the problems of making quantitative forecasts and the implications of reduced water availability in Jordan.
Resumo:
Natural resource-dependent societies in developing countries are facing increased pressures linked to global climate change. While social-ecological systems evolve to accommodate variability, there is growing evidence that changes in drought, storm and flood extremes are increasing exposure of currently vulnerable populations. In many countries in Africa, these pressures are compounded by disruption to institutions and variability in livelihoods and income. The interactions of both rapid and slow onset livelihood disturbance contribute to enduring poverty and slow processes of rural livelihood renewal across a complex landscape. We explore cross-scale dynamics in coping and adaptation response, drawing on qualitative data from a case study in Mozambique. The research characterises the engagements across multiple institutional scales and the types of agents involved, providing insight into emergent conditions for adaptation to climate change in rural economies, The analysis explores local responses to climate shocks, food security and poverty reduction, through informal institutions, forms of livelihood diversification and collective land-use systems that allow reciprocity, flexibility and the ability to buffer shocks. However, the analysis shows that agricultural initiatives have helped to facilitate effective livelihood renewal, through the reorganisation of social institutions and opportunities for communication, innovation and micro-credit. Although there are challenges to mainstreaming adaptation at different scales, this research shows why it is critical to assess how policies can protect conditions for emergence of livelihood transformation. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Disproportionately little attention has been paid to the dry season trade-off between rice and (inland capture) fish production on the floodplains of Bangladesh, compared to the same trade-off during the flood season. As the rural economy grows increasingly dominated by dry-season irrigated rice production, and floodplain land and water come under ever-increasing pressure during the dry winter months, there is an urgent need to focus attention on these dry months that are so critical to the survival and propagation of the floodplain resident fish, and to the poor people that depend on these fish for their livelihood. This article examines three important dry-season natural resource constraints to floodplain livelihoods in Bangladesh, and finds a common factor at the heart of all three: rice cultivation on lands at low and very low elevations. The article articulates the system interlinkages that bind these constraints and the long-run trend towards irrigated rice cropping on lower-lying lands, and suggests a management approach based on locally tailored strategies to arrest this trend. Apart from its direct relevance to the floodplains of Bangladesh, which support more than 100 million people, these lessons have relevance for river floodplain systems elsewhere in the developing world, notably the Mekong Delta.
Resumo:
Influenza virus epidemics occur on an annual basis and cause severe disease in the very young and old. The vaccine administered to high-risk groups is generated by amplifying reassortant viruses, with chronologically relevant viral surface antigens, in eggs. Every 20 years or so, influenza pandemics occur causing widespread fatality in all age groups. These viruses display novel viral surface antigens acquired from a zoonotic source, and vaccination against them poses new issues since production of large amounts of a respiratory virus containing novel surface antigens could be dangerous for those involved in manufacture. To minimise risks, it is advisable to use a virus whose genetic backbone is highly attenuated in man. Traditionally, the A/PR/8/34 strain of virus is used, however, the genetic basis of its attenuation is unclear. Cold-adapted (CA) strains of the influenza virus are all based on the H2N2 subtype, itself a virus with pandemic potential, and again the genetic basis of temperature sensitivity is not yet established. Reverse genetics technology allows us to engineer designer influenza viruses to order. Using this technology, we have been investigating mutations in several different gene segments to effectively attenuate potential vaccine strains allowing the safe production of vaccine to protect against the next pandemic. (C) 2003 Elsevier B.V. All rights reserved.
Resumo:
This paper investigates whether and to what extent a wide range of actors in the UK are adapting to climate change, and whether this is evidence of a social transition. We document evidence of over 300 examples of early adopters of adaptation practice to climate change in the UK. These examples span a range of activities from small adjustments (or coping) to building adaptive capacity, implementing actions and creating deeper systemic change in public and private organisations in a range of sectors. We find that adaptation in the UK has been dominated by government initiatives and has principally occurred in the form of research into climate change impacts. These actions within government stimulate a further set of actions at other scales in public agencies, regulatory agencies and regional government (or in the devolved administrations), though with little real evidence of climate change adaptation initiatives trickling down to local government level. The water supply and flood defence sectors, requiring significant investment in large scale infrastructure such as reservoirs and coastal defences, have invested more heavily in identifying potential impacts and adaptations. Economic sectors that are not dependent on large scale infrastructure appear to be investing far less effort and resources in preparing for climate change. We conclude that while the government-driven top-down targeted adaptation approach has generated anticipatory action at low cost, it may also have created enough niche activities to allow for diffusion of new adaptation practices in response to real or perceived climate change. These results have significant implications for how climate policy can be developed to support autonomous adaptors in the UK and other countries.
Resumo:
A strong climatic warming is currently observed in the Caucasus mountains, which has profound impact on runoff generation in the glaciated Glavny (Main) Range and on water availability in the whole region. To assess future changes in the hydrological cycle, the output of a general circulation model was downscaled statistically. For the 21st century, a further warming by 4–7 °C and a slight precipitation increase is predicted. Measured and simulated meteorological variables were used as input into a runoff model to transfer climate signals into a hydrological response under both present and future climate forcings. Runoff scenarios for the mid and the end of the 21st century were generated for different steps of deglaciation. The results show a satisfactory model performance for periods with observed runoff. Future water availability strongly depends on the velocity of glacier retreat. In a first phase, a surplus of water will increase flood risk in hot years and after continuing glacier reduction, annual runoff will again approximate current values. However, the seasonal distribution of streamflow will change towards runoff increase in spring and lower flows in summer.
Resumo:
Two-dimensional flood inundation modelling is a widely used tool to aid flood risk management. In urban areas, the model spatial resolution required to represent flows through a typical street network often results in an impractical computational cost at the city scale. This paper presents the calibration and evaluation of a recently developed formulation of the LISFLOOD-FP model, which is more computationally efficient at these resolutions. Aerial photography was available for model evaluation on 3 days from the 24 to the 31 of July. The new formulation was benchmarked against the original version of the model at 20 and 40 m resolutions, demonstrating equally accurate simulation, given the evaluation data but at a 67 times faster computation time. The July event was then simulated at the 2 m resolution of the available airborne LiDAR DEM. This resulted in more accurate simulation of the floodplain drying dynamics compared with the coarse resolution models, although maximum inundation levels were simulated equally well at all resolutions tested.