991 resultados para energy resolution
Resumo:
This study intended to compare bone density and architecture in three groups of women: young women with anorexia nervosa (AN), an age-matched control group of young women, and healthy late postmenopausal women. Three-dimensional peripheral quantitative high resolution computed-tomography (HR-pQCT) at the ultradistal radius, a technology providing measures of cortical and trabecular bone density and microarchitecture, was performed in the three cohorts. Thirty-six women with AN aged 18-30years (mean duration of AN: 5.8years), 83 healthy late postmenopausal women aged 70-81 as well as 30 age-matched healthy young women were assessed. The overall cortical and trabecular bone density (D100), the absolute thickness of the cortical bone (CTh), and the absolute number of trabecules per area (TbN) were significantly lower in AN patients compared with healthy young women. The absolute number of trabecules per area (TbN) in AN and postmenopausal women was similar, but significantly lower than in healthy young women. The comparison between AN patients and post-menopausal women is of interest because the latter reach bone peak mass around the middle of the fertile age span whereas the former usually lose bone before reaching optimal bone density and structure. This study shows that bone mineral density and bone compacta thickness in AN are lower than those in controls but still higher than those in postmenopause. Bone compacta density in AN is similar as in controls. However, bone inner structure in AN is degraded to a similar extent as in postmenopause. This last finding is particularly troubling.
Resumo:
Chez les animaux, les jeunes dépendant des parents durant leur développement sont en compétition pour obtenir la nourriture, qu'ils quémandent par des cris et postures ostentatoires et se disputent physiquement. Les frères et soeurs n'ont pas la même compétitivité, en particulier s'ils diffèrent en âge, et leur niveau de faim fluctue dans le temps. Comme dans tout type de compétition, chacun doit ajuster son investissement aux rivaux, c'est à dire aux besoins et comportements de ses frères et soeurs. Dans le contexte de la famille, selon la théorie de sélection de parentèle, les jeunes bénéficient de leur survie mutuelle et donc de la propagation de la part de gènes qu'ils ont en commun. L'hypothèse de la « négociation frères-soeurs » prédit que, sous certaines conditions, les jeunes négocient entre eux la nourriture, ce qui réduit les coûts de compétition et permet de favoriser les frères et soeurs les plus affamés. La littérature actuelle se focalise sur les signaux de quémande entre enfants et parents et les interactions compétitives frères-soeurs sont étudiées principalement au sein de paires, alors que les nichées ou portées en comprennent souvent de nombreux. Cette thèse vise à mieux comprendre comment et jusqu'à quel point plusieurs jeunes ajustent mutuellement leurs signaux de besoin. C'est une question importante, étant donné que cela influence la répartition de nourriture entre eux, donc la résolution du conflit qui les oppose et à terme leur valeur évolutive. Le modèle d'étude est la chouette effraie (Tyto alba), chez laquelle jusqu'à neufs poussins émettent des milliers de cris chacun par nuit. Ils négocieraient entre eux la prochaine proie indivisible rapportée au nid avant que les parents ne reviennent : un poussin affamé crie plus qu'un autre moins affamé, ce qui dissuade ce dernier de crier en retour et par la suite de quémander la nourriture aux parents. L'investissement optimal correspondrait donc à écarter son frère en permanence vu que l'arrivée des parents est imprévisible, mais à moindre coût. Dans un premier axe, nous avons exploré au sein de dyades les mécanismes acoustiques permettant aux poussins de doser leur effort vocal durant les heures de compétition où ils sont laissés seuls au nid. Nous avons trouvé que les poussins évitent de crier simultanément, ce qui optimiserait la discrimination du nombre et de la durée de leurs cris, lesquels reflètent de façon honnête leur niveau de faim et donc leur motivation. L'alternance des cris paraît particulièrement adaptée au fait que les poussins se fient à des variations temporelles subtiles dans le rythme et la durée de leurs vocalisations pour prendre la parole. En particulier, allonger ses cris tout en criant moins dissuade efficacement le rival de répondre, ce qui permet de monopoliser la parole dans de longs « monologues ». Ces règles seraient universelles puisqu'elles ne dépendent pas de la séniorité, de la faim, ni de la parenté et les poussins répondent à un playback de façon similaire à un vrai frère. Tous ces résultats apportent la première preuve expérimentale que les juvéniles communiquent de façon honnête sur leurs besoins, ajustent activement le rythme de leurs cris et utilisent des composantes multiples de leurs vocalisations d'une façon qui réduit le coût de la compétition. De plus, il s'agit de la première démonstration que des règles de conversation régissent de longs échanges vocaux chez les animaux de façon comparable aux règles basiques observées chez l'Homme. Dans un second axe, nous avons exploré les stratégies comportementales que les poussins adoptent pour rivaliser avec plusieurs frères et soeurs, par le biais d'expériences de playback. Nous avons trouvé que les poussins mémorisent des asymétries de compétitivité entre deux individus qui dialoguent et répondent plus agressivement au moins compétitif une fois qu'ils sont confrontés à chacun isolément. Dans la même ligne, quand ils entendent un nombre variable d'individus criant à un taux variable, les poussins investissent le plus contre des rivaux moins nombreux et moins motivés. En accord avec les prédictions des modèles théoriques, les poussins de chouette effraie escaladent donc les conflits pour lesquels leur chance de gagner contrebalance le plus l'énergie dépensée. Nous révélons ainsi que 1) les jeunes frères et soeurs 'espionnent' les interactions de leurs rivaux pour évaluer leur compétitivité relative, ce qui est sans doute moins coûteux qu'une confrontation directe avec chacun, et 2) dosent leur investissement vocal en fonction du nombre de rivaux actuellement en compétition et de leur motivation de façon concomitante. Ces résultats montrent que les interactions entre frères et soeurs au nid reposent sur des mécanismes similaires à ceux observés, mais encore de façon anecdotique, chez les adultes non apparentés qui se disputent les territoires et partenaires sexuels. Cette thèse souligne donc combien il est crucial de considérer dorénavant la famille comme un réseau de communication à part entière pour mieux comprendre comment les jeunes résolvent les conflits autour du partage des ressources parentales. Plus généralement, elle révèle l'importance de la dynamique temporelle des vocalisations dans les conflits et la communication des animaux. A la lumière de nos résultats, la chouette effraie apparaît comme un modèle clé pour de futures recherches sur la résolution des conflits et la communication acoustique. - In species with parental care, offspring contest priority access to food by begging through conspicuous postures and vocalisations and by physically jockeying. Siblings differ in their competitiveness, especially in the case of age and size hierarchies, and their hunger level fluctuates in time. As in competition in general, each individual should adjust its investment to opponents that is to say to its siblings' needs and behaviours. In the particular context of family, according to kin selection theory, siblings derive extra fitness benefits from their mutual survival and hence the spreading of the genes they share. The "sibling negotiation" predicts that, under certain conditions, young would negotiate among them priority access to food, which reduces competition costs and enables promoting the most hungry siblings. To date, the literature focuses on signals of need between parents and offspring and competitive interactions (in particular among siblings) are mostly studied within pairwise interactions, yet they commonly involve more numerous rivals. This PhD aims at better understanding how and the extent to which several young siblings compete through signalling. This is important since this influences how food is allocated among them, thus the outcome of sibling rivalry and ultimately their fitness. I use the barn owl (Tyto alba) as a model, in which the one to nine nestlings emit a simple noisy call thousands of times per night. Thereby, they would negotiate among them priority access to the indivisible food next delivered prior to parents' feeding visits. A hungry nestling emits more calls than a less hungry sibling, which deters it to call in return and ultimately beg food at parents. The optimal investment thus corresponds to constantly deterring the rival to compete, given that parents' arrival is unpredictable, but at the lowest costs. In the first axis of my thesis, we explored within dyads the acoustic mechanisms by which owlets dose vocal effort when competing during the hours they are left alone. We found that owlets avoid overlapping each other's calls. This would enhance the discrimination of both call number and duration, which honestly reflect individuals' hunger level and hence motivation to compete. Such antiphony seems best adapted to the fact that siblings actually use subtle temporal variations in the rhythm and duration of their calls to take or give their turn. Owlets alternate monologs, in which lengthening calls efficiently deters the rival to respond while reducing call number. Such rules depend neither on seniority, hunger level nor kinship since nestlings responded similarly to a live sibling and an unrelated playback individual. Taken together, these findings provide the first experimental proof that dependent young honestly communicate about their need, actively adjust the timing of their calls and use multicomponent signals in a way that reduces vocal costs. Moreover, this is the first demonstration of conversational rules underlying animal long-lasting vocal exchanges comparable to the basic turn-taking signals observed in humans. In the second axis, we focused on the behavioural strategies owlets adopt to compete with more than one sibling, using playback experiments. We found that singleton bystanders memorised competitive asymmetries between two playback individuals dialoguing and responded more aggressively to the submissive one once they later faced each of both alone. Moreover, when hearing a varying number of nestlings calling at varying rates, owlets vocally invested the most towards fewer and less motivated rivals. In line with predictions from models on conflict settlement, barn owls thus escalate contests in which their chance of winning best counterbalances the energy spent. These results reveal that young socially eavesdrop on their siblings' interactions to assess their relative competitiveness at likely lower costs than direct confrontation, and dose vocal effort relative to both their number and motivation. This shows that young siblings' interactions imply mechanisms similar to those observed, yet still anecdotally, in unrelated adults that contest mates and territories. This PhD therefore highlights how crucial it is to further consider family as a communication network to better understand how siblings resolve conflicts over the share of parental resources. More generally, it provides important insights into the role of the temporal dynamics of signalling during animal contests and communication. In the light of our findings, the barn owl emerges as a key model for future research on conflict resolution and acoustic communication in animals.
Resumo:
OBJECTIVE: To compare the mechanical external work (Wext ) and pendular energy transduction (Rstep ) at spontaneous walking speed (Ss ) in individuals with Prader-Willi syndrome (PWS) versus subjects with nonsyndromal obesity (OB) to investigate whether the early onset of obesity allows PWS subjects to adopt energy conserving gait mechanics. DESIGN AND METHODS: Wext and Rstep were computed using kinematic data acquired by an optoelectronic system and compared in 15 PWS (BMI = 39.5 ± 1.8 kg m(-2) ; 26.7 ± 1.5 year) and 15 OB (BMI = 39.3 ± 1.0 kg m(-2) ; 28.7 ± 1.9 year) adults matched for gender, age and BMI and walking at Ss . RESULTS: Ss was significantly lower in PWS (0.98 ± 0.03 m s(-1) ) than in OB (1.20 ± 0.02 m s(-1) ; P < 0.001). There were no significant differences in Wext per kilogram between groups (PWS: 0.37 ± 0.04 J kg(-1) m(-1) ; OB: 0.40 ± 0.05 J kg(-1) m(-1) ; P = 0.66) and in Rstep (PWS: 69.9 ± 2.9%; OB: 67.7 ± 2.4%; P = 0.56). However, Rstep normalized to Froude number (Rstep /Fr) was significantly greater in PWS (6.0 ± 0.6) than in OB (3.8 ± 0.2; P = 0.001). Moreover, Rstep /Fr was inversely correlated with age of obesity onset (r = -0.49; P = 0.006) and positively correlated with obesity duration (r = 0.38; P = 0.036). CONCLUSION: Individuals with PWS seem to alter their gait to improve pendular energy transduction as a result of precocious and chronic adaptation to loading.
Resumo:
BACKGROUND: Obesity is becoming more frequent in children; understanding the extent to which this condition affects not only carbohydrate and lipid metabolism but also protein metabolism is of paramount importance. OBJECTIVE: We evaluated the kinetics of protein metabolism in obese, prepubertal children in the static phase of obesity. DESIGN: In this cross-sectional study, 9 obese children (x +/- SE: 44+/-4 kg, 30.9+/-1.5% body fat) were compared with 8 lean (28+/-2 kg ,16.8+/-1.2% body fat), age-matched (8.5+/-0.2 y) control children. Whole-body nitrogen flux, protein synthesis, and protein breakdown were calculated postprandially over 9 h from 15N abundance in urinary ammonia by using a single oral dose of [15N]glycine; resting energy expenditure (REE) was assessed by indirect calorimetry (canopy) and body composition by multiple skinfold-thickness measurements. RESULTS: Absolute rates of protein synthesis and breakdown were significantly greater in obese children than in control children (x +/- SE: 208+/-24 compared with 137+/-14 g/d, P < 0.05, and 149+/-20 compared with 89+/-13 g/d, P < 0.05, respectively). When these variables were adjusted for fat-free mass by analysis of covariance, however, the differences between groups disappeared. There was a significant relation between protein synthesis and fat-free mass (r = 0.83, P < 0.001) as well as between protein synthesis and REE (r = 0.79, P < 0.005). CONCLUSIONS: Obesity in prepubertal children is associated with an absolute increase in whole-body protein turnover that is consistent with an absolute increase in fat-free mass, both of which contribute to explaining the greater absolute REE in obese children than in control children.
Resumo:
This study analyzes the impact of price shocks in three input and output markets critical to ethanol: gasoline, corn, and sugar. We investigate the impact of these shocks on ethanol and related agricultural markets in the United States and Brazil. We find that the composition of a country’s vehicle fleet determines the direction of the response of ethanol consumption to changes in the gasoline price. We also find that a change in feedstock costs affects the profitability of ethanol producers and the domestic ethanol price. In Brazil, where two commodities compete for sugarcane, changes in the sugar market affect the competing ethanol market.
Resumo:
Since its introduction 16 years ago, the astrocyte-neuron lactate shuttle (ANLS) model has profoundly modified our understanding of neuroenergetics by bringing a cellular and molecular resolution. Praised or disputed, the concept has never ceased to attract attention, leading to critical advances and unexpected insights. Here, we summarize recent experimental evidence further supporting the main tenets of the model. Thus, evidence for distinct metabolic phenotypes between neurons (mainly oxidative) and astrocytes (mainly glycolytic) have been provided by genomics and classical metabolic approaches. Moreover, it has become clear that astrocytes act as a syncytium to distribute energy substrates such as lactate to active neurones. Glycogen, the main energy reserve located in astrocytes, is used as a lactate source to sustain glutamatergic neurotransmission and synaptic plasticity. Lactate is also emerging as a neuroprotective agent as well as a key signal to regulate blood flow. Characterization of monocarboxylate transporter regulation indicates a possible involvement in synaptic plasticity and memory. Finally, several modeling studies captured the implications of such findings for many brain functions. The ANLS model now represents a useful, experimentally based framework to better understand the coupling between neuronal activity and energetics as it relates to neuronal plasticity, neurodegeneration, and functional brain imaging.
Resumo:
OBJECTIVE: A new tool to quantify visceral adipose tissue (VAT) over the android region of a total body dual-energy x-ray absorptiometry (DXA) scan has recently been reported. The measurement, CoreScan, is currently available on Lunar iDXA densitometers. The purpose of the study was to determine the precision of the CoreScan VAT measurement, which is critical for understanding the utility of this measure in longitudinal trials. DESIGN AND METHODS: VAT precision was characterized in both an anthropomorphic imaging phantom (measured on 10 Lunar iDXA systems) and a clinical population consisting of obese women (n = 32). RESULTS: The intrascanner precision for the VAT phantom across 9 quantities of VAT mass (0-1,800 g) ranged from 28.4 to 38.0 g. The interscanner precision ranged from 24.7 to 38.4 g. There was no statistical dependence on the quantity of VAT for either the inter- or intrascanner precision result (p = 0.670). Combining inter- and intrascanner precision yielded a total phantom precision estimate of 47.6 g for VAT mass, which corresponds to a 4.8% coefficient of variance (CV) for a 1 kg VAT mass. Our clinical population, who completed replicate total body scans with repositioning between scans, showed a precision of 56.8 g on an average VAT mass of 1110.4 g. This corresponds to a 5.1% CV. Hence, the in vivo precision result was similar to the phantom precision result. CONCLUSIONS: The study suggests that CoreScan has a relatively low precision error in both phantoms and obese women and therefore may be a useful addition to clinical trials where interventions are targeted towards changes in visceral adiposity.
Resumo:
Small daily positive energy imbalances of 200 to 800 kJ (about 50 to 200 kcal) due to reduced resting energy expenditure (REE), reduced diet-induced thermogenesis, or physical inactivity are believed to predispose to obesity. However, estimates of the magnitude of the weight gain often fail to account for concurrent changes in body composition and increases in maintenance energy requirements as weight increases and energy equilibrium is re-established. Using previously reported data on body composition and REE in women and the energy cost of tissue deposition, we used mathematical models to predict the theoretical effect of a persistent reduction in energy expenditure on long-term weight gain, assuming no adaptation in energy intake. The analyses indicate the following effects of a reduced level of energy expenditure in lean and obese women: (i) REE rises more slowly with increasing degrees of obesity due to a declining proportion of the more metabolically active fat-free mass; so, for the same positive energy balance, a significantly greater weight gain is expected for obese than for lean women before energy equilibrium is re-established; (ii) due to the greater energy density of adipose tissue, the time course of weight gain to achieve energy balance is longer for obese subjects: in general, this is approximately five years for lean and ten years for obese women; (iii) the magnitude of weight gain of lean women in response to a reduced energy expenditure of 200 to 800 kJ/day is only about 3 to 15 kg, amounts insufficient to explain severe obesity.
Resumo:
Four standard radiation qualities (from RQA 3 to RQA 9) were used to compare the imaging performance of a computed radiography (CR) system (general purpose and high resolution phosphor plates of a Kodak CR 9000 system), a selenium-based direct flat panel detector (Kodak Direct View DR 9000), and a conventional screen-film system (Kodak T-MAT L/RA film with a 3M Trimax Regular screen of speed 400) in conventional radiography. Reference exposure levels were chosen according to the manufacturer's recommendations to be representative of clinical practice (exposure index of 1700 for digital systems and a film optical density of 1.4). With the exception of the RQA 3 beam quality, the exposure levels needed to produce a mean digital signal of 1700 were higher than those needed to obtain a mean film optical density of 1.4. In spite of intense developments in the field of digital detectors, screen-film systems are still very efficient detectors for most of the beam qualities used in radiology. An important outcome of this study is the behavior of the detective quantum efficiency of the digital radiography (DR) system as a function of beam energy. The practice of users to increase beam energy when switching from a screen-film system to a CR system, in order to improve the compromise between patient dose and image quality, might not be appropriate when switching from screen-film to selenium-based DR systems.
Resumo:
OBJECT: To study a scan protocol for coronary magnetic resonance angiography based on multiple breath-holds featuring 1D motion compensation and to compare the resulting image quality to a navigator-gated free-breathing acquisition. Image reconstruction was performed using L1 regularized iterative SENSE. MATERIALS AND METHODS: The effects of respiratory motion on the Cartesian sampling scheme were minimized by performing data acquisition in multiple breath-holds. During the scan, repetitive readouts through a k-space center were used to detect and correct the respiratory displacement of the heart by exploiting the self-navigation principle in image reconstruction. In vivo experiments were performed in nine healthy volunteers and the resulting image quality was compared to a navigator-gated reference in terms of vessel length and sharpness. RESULTS: Acquisition in breath-hold is an effective method to reduce the scan time by more than 30 % compared to the navigator-gated reference. Although an equivalent mean image quality with respect to the reference was achieved with the proposed method, the 1D motion compensation did not work equally well in all cases. CONCLUSION: In general, the image quality scaled with the robustness of the motion compensation. Nevertheless, the featured setup provides a positive basis for future extension with more advanced motion compensation methods.
Resumo:
We provide estimates of the costs associated with inducing substantial conversion of land from production of traditional crops to switchgrass. Higher traditional crop prices due to increased demand for corn from the ethanol industry has increased the relative advantage that row crops have over switchgrass. Results indicate that farmers will convert to switchgrass production only with significant conversion subsidies. To examine potential environmental consequences of conversion, we investigate three stylized landscape usage scenarios, one with an entire conversion of a watershed to switchgrass production, a second with the entire watershed planted to continuous corn under a 50% removal rate of the biomass, and a third scenario that places switchgrass on the most erodible land in the watershed and places continuous corn on the least erodible. For each of these illustrative scenarios, the watershed-scale Soil and Water Assessment Tool (SWAT) hydrological model (Arnold et al., 1998; Arnold and Forher, 2005) is used to evaluate the effect of these landscape uses on sediment and nutrient loadings in the Maquoketa Watershed in eastern Iowa.
Resumo:
Newsletter produced by Iowa Department of Natural Resources about energy and waste in Iowa
Resumo:
Little is known about how human amnesia affects the activation of cortical networks during memory processing. In this study, we recorded high-density evoked potentials in 12 healthy control subjects and 11 amnesic patients with various types of brain damage affecting the medial temporal lobes, diencephalic structures, or both. Subjects performed a continuous recognition task composed of meaningful designs. Using whole-scalp spatiotemporal mapping techniques, we found that, during the first 200 ms following picture presentation, map configuration of amnesics and controls were indistinguishable. Beyond this period, processing significantly differed. Between 200 and 350 ms, amnesic patients expressed different topographical maps than controls in response to new and repeated pictures. From 350 to 550 ms, healthy subjects showed modulation of the same maps in response to new and repeated items. In amnesics, by contrast, presentation of repeated items induced different maps, indicating distinct cortical processing of new and old information. The study indicates that cortical mechanisms underlying memory formation and re-activation in amnesia fundamentally differ from normal memory processing.