997 resultados para element cycling


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The fate and cycling of two selected POPs is investigated for the North Sea system with an improved version of a fate and transport ocean model (FANTOM). The model uses atmospheric data from the EMEP MSC East POP model (Gusev et al., 2009), giving reasonable concentrations and seasonal distributions for the entire region, as opposed to the three observation stations that Ilyina et al. (2006) were limited to. Other model improvements include changes in the calculation of POP exchange between the water column and sediment.

We chose to simulate the fate of two POPs with very different properties, ?-HCH and PCB 153. Since the fate and cycling of POPs are strongly affected by hydrodynamic processes, a high resolution version of the Hamburg Shelf Ocean Model (HAMSOM) was developed and utilised. Simulations were made for the period 1996–2005. Both models were validated by comparing results with available data, which showed that the simulations were of very satisfactory quality.

Model results show that the North Sea is a net sink for ?-HCH and a net source to the atmosphere of PCB 153. Total masses of ?-HCH and PCB 153 in 2005 are reduced to 30% and 50%, respectively, of 1996 values.

Storms resuspending bottom sediments into the water column mobilise POPs into the atmosphere and have the potential to deliver substantial loads of these POPs into Europe.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been accepted that thermal and moisture regimes within stonework exert a major influence upon patterns of salt movement and, subsequently, the type and severity of salt-induced decay. For example, it is suggested that slow drying is more likely to bring dissolved salts to the surface, whereas rapid drying could result in the retention of some salt at or near the frequent wetting depth. In reality however, patterns of heating, cooling and surface wetting regimes that drive them – are complex and inconsistent responses to a wide range of environmental controls. As a first step to understanding the complexity of these relationships, this paper reports a series of experiments within a climatic cabinet designed to replicate the effects of short-term temperature fluctuations on the surface and sub-surface temperature regimes of a porous Jurassic limestone, and how they are influenced by surface wetting, ambient temperature and surface airflow. Preliminary results confirm the significance of very steep temperature/stress gradients within the outer centimetre or less of exposed stone under short-duration cycles of heating and cooling. This is important because this is the zone in which many stone decay processes, particularly salt weathering, operate, these processes invariably respond to temperature and moisture fluctuations, and short-term interruptions to insolation could, for example,
trigger these fluctuations on numerous occasions over a day. The data also indicate that there are complex patterns of temperature reversal with depth that are influenced in their intensity and location by surface wetting and moisture penetration, airflow across the surface and ambient air temperature. The presence of multiple temperature reversals and their variation over the course of heating and cooling phases belies previous assumtions of smooth, exponential increases and decreases in subsurface temperatures in response, for example to diurnal patterns of heating and cooling

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Agroecological zones within Bangladesh with low levels of arsenic in groundwater and soils produce rice that is high in arsenic with respect to other producing regions of the globe. Little is known about arsenic cycling in these soils and the labile fractions relevant for plant uptake when flooded. Soil porewater dynamics of field soils (n = 39) were recreated under standardized laboratory conditions to investigate the mobility and interplay of arsenic, Fe, Si, C, and other elements, in relation to rice grain element composition, using the dynamic sampling technique diffusive gradients in thin films (DGT). Based on a simple model using only labile DGT measured arsenic and dissolved organic carbon (DOC), concentrations of arsenic in Aman (Monsoon season) rice grain were predicted reliably. DOC was the strongest determinant of arsenic solid-solution phase partitioning, while arsenic release to the soil porewater was shown to be decoupled from that of Fe. This study demonstrates the dual importance of organic matter (OM), in terms of enhancing arsenic release from soils, while reducing bioavailability by sequestering arsenic in solution.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has previously been shown that across different arsenic (As) soil environments, a decrease in grain selenium (Se), zinc (Zn), and nickel (Ni) concentrations is associated with an increase in grain As. In this study we aim to determine if there is a genetic element for this observation or if it is driven by the soil As environment. To determine the genetic and environmental effect on grain element composition, multielement analysis using ICP-MS was performed on rice grain from a range of rice cultivars grown in 4 different field sites (2 in Bangladesh and 2 in West Bengal). At all four sites a negative correlation was observed between grain As and grain Ni, while at three of the four sites a negative correlation was observed between grain As and grain Se and grain copper (Cu). For manganese, Ni, Cu, and Se there was also a significant genetic interaction with grain arsenic indicating some cultivars are more strongly affected by arsenic than others.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this paper, a new approach for extracting stress intensity factors (SIFs) by the extended element-free Galerkin method, through a crack closure integral (CCI) scheme, is proposed. The CCI calculation is used in conjunction with a local smoothing technique to improve the accuracy of the computed SIFs in a number of case studies of linear elastic fracture mechanics. The cases involve problems of mixed-mode, curved crack and thermo-mechanical loading. The SIFs by CCI, displacement and stress methods are compared with those based on the M-integral technique reported in the literature. The proposed CCI method involves very simple relations, and still gives good accuracy. The convergence of the results is also examined.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Delamination and matrix cracking are routine damage mechanisms, observed by post-mortem analysis of laminated structures containing geometrical features such as notches or bolts. Current finite element tools cannot explicitly model an intralaminar matrix microcrack, except if the location of the damage is specified a priori. In this work, a meshless technique, the Element-Free Galerkin (EFG) method, is utilized for the first time to simulate delamination (interlaminar) and intralaminar matrix microcracking in composite laminates.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The termination of stiffeners in composite aircraft structures give rise to regions of high interlaminar shear and peel stresses as the load in the stiffener is diffused into the skin. This is of particular concern in co-cured composite stiffened structures where there is a relatively low resistance to through-thickness stress components at the skin-stiffener interface. In Part I, experimental results of tested specimens highlighted the influence of local design parameters on their structural response. Indeed some of the observed behavior was unexpected. There is a need to be able to analyse a range of changes in geometry rapidly to allow the analysis to form an integral part of the structural design process.

This work presents the development of a finite element methodology for modelling the failure process of these critical regions. An efficient thick shell element formulation is presented and this element is used in conjuction with the Virtual Crack Closure Technique (VCCT) to predict the crack growth characteristics of the modelled specimens. Three specimens were modelled and the qualitative aspects of crack growth were captured successfully. The shortcomings in the quantitative correlation between the predicted and observed failure loads are discussed. There was evidence to suggest that high through-thickness compressive stresses enhanced the fracture toughness in these critical regions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The formulation of a 3D composite element and its use in a mixed-mode fracture mechanics example is presented. This element, like a conventional 3D finite element, has three degrees of freedom per node although, like a plate element, the strains are defined in the local directions of the mid-plane surface. The stress-strain property matrix of this element was modified to decouple the stresses in the local mid-plane and the strains normal to this plane thus preventing the element from being too stiff in bending. A main advantage of this formulation is the ability to model a laminate with a single 3D element. The motivation behind this work was to improve the computational efficiency associated with the calculation of strain energy release rates in laminated structures. A comparison of mixed-mode results using different elements of an in-house finite element package are presented. Good agreement was achieved between the results obtained using the new element and coventional higher-order elements

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A simple non-linear global-local finite element methodology is presented. A global coarse model, using 2-D shell elements, is solved non-linearly and the displacements and rotations around a region of interest are applied, as displacement boundary conditions, to a refined local 3-D model using Kirchhoff plate assumptions. The global elements' shape functions are used to interpolate between nodes. The local model is then solved non-linearly with an incremental scheme independent of that used for the global model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiscale micro-mechanics theory is extensively used for the prediction of the material response and damage analysis of unidirectional lamina using a representative volume element (RVE). Th is paper presents a RVE-based approach to characterize the materi al response of a multi-fibre cross-ply laminate considering the effect of matrix damage and fibre-matrix interfacial strength. The framework of the homogenization theory for periodic media has been used for the analysis of a 'multi-fibre multi-layer representative volume element' (M2 RVE) representing cross-ply laminate. The non-homogeneous stress-strain fields within the M2RVE are related to the average stresses and strains by using Gauss theorem and the Hill-Mandal strain energy equivalence principle. The interfacial bonding strength affects the in-plane shear stress-strain response significantl y. The material response predicted by M2 RVE is in good agreement with the experimental results available in the literature. The maximum difference between the shear stress predicted using M2 RVE and the experimental results is ~15% for the bonding strength of 30MPa at the strain value of 1.1%