977 resultados para eastern Asian endemic genera
Resumo:
Based upon analyses of grain-size, rare earth element (REE) compositions, elemental occurrence phases of REE, and U-series isotopic dating, the sediment characteristics and material sources of the study area were examined for the recently formed deep-sea clays in the eastern Philippine Sea. The analytical results are summarized as follows. (1) Low accumulation rate, poor sorting and roundness, and high contents of grains coarser than fine silt indicate relatively low sediment input, with localized material source without long distance transport. (2) The REE Contents are relatively high. Shale-normalized patterns of REE indicate weak enrichment in heavy REE (HREE), Ce-passive anomaly, and Eu-positive anomaly. (3) Elemental occurrence phases of REE between the sediments with and without crust are similar. REE mainly concentrate in residual phase and then in ferromanganese oxide phase. The light REE (LREE) enrichment, Ce-positive anomaly, and Eu-positive anomaly occur in residual phase. Ferromanganese oxide phase shows the characteristics of relatively high HREE content and Ce-passive anomaly. (4) There are differences in each above mentioned aspect between the sediments with and without ferromanganese crust. (5) Synthesizing the above characteristics and source discriminant analysis, the study sediments are deduced to mainly result from the alteration of local and nearby volcanic materials. Continental materials transported by wind and/or river (ocean) flows also have minor contributions.
Resumo:
The Late Pliocene is thought to be characterized by the simultaneous intensification of both the East Asian winter monsoon (EAWM) and East Asian summer monsoon (EASM). However, the evolution of the EASM during the Pliocene remains still controversial and only little is known about the dynamics of the EASM during the Pliocene on orbital time scales. Here we use clay mineral assemblages in sediments from Ocean Drilling Program (ODP) Site 1143 in the southern South China Sea (SCS) to obtain proxy records of past changes in the EASM climate during the Pliocene. Provenance analysis suggests that illite, chlorite and kaolinite originated mainly from the Mekong River drainage area. Smectite was derived mainly from the Indonesian islands. The kaolinite/illite ratio and the chemical index of alteration (CIA) of siliciclastic sediments allowed us to reconstruct the history of chemical weathering and physical erosion of the Mekong River drainage area and thus, the evolution of,the EASM during the Pliocene. Our clay minerals proxy data suggests a stronger EASM during the Early Pliocene than during the Late Pliocene. We propose that the long-term evolution of the EASM has been driven by global cooling rather than the uplift of the Tibetan Plateau. Spectral analysis of kaolinite/ illite ratio displays a set of strong periodicities at 100 ka, 30 ka, 28 ka, 25 ka, and 22 ka. with no clear obliquityrelated signal. Our study suggests that the Pliocene EASM intensity on orbital time scales is not only controlled by the Northern Hemisphere summer insolation, but also strongly influenced by equatorial Pacific ENSO-like ocean atmosphere dynamics. (C) 2010 Elsevier B.V. All rights reserved.