993 resultados para dramatic structure
Resumo:
Novel molecular matrices have been derived from coumarin-4-acetic acids and beta-phenylethylamines using the Bischler-Napieralski protocol which has led to the synthesis of analogues of tetrahydropapaverine in which the dimethoxybenzene moiety has been replaced by substituted coumarins. One carbon homologation has led to cyclization at the C3 position of coumarin generating the protoberberine skeleton. Structures have been confirmed by diffraction studies. The results showed that compounds 6e, 6f, 7e and 7f were found to be very effective against DNA samples of Gram positive bacterium Staphylococcus aureus and fungus Aspergillus niger. (C) 2010 Elsevier Masson SAS. All rights reserved.
Resumo:
C12H8BT2O4. monoclinic, P12(1)/cl (No. 14), a = 11.546(2) Angstrom, b = 6.885(4) Angstrom,= 15.949(3) Angstrom, beta = 101.75(2)degrees, V= 1241.3 Angstrom(3), Z = 4, p(m) = 2.040 g.cm(-3), R-all(F) = 0.039, wR(all)(F) = 0.043, T = 300 K.
Resumo:
A theoretical conformational analysis of fenamates, which are N-arylated derivatives of anthranilic acid or 2-aminonicotinic acid with different substituents on the aryl (phenyl) group, is reported. The analysis of these analgesics, which are believed to act through the inhibition of prostaglandin biosynthesis, was carried out using semi-empirical potential functions. The results and available crystallographic observations have been critically examined in terms of their relevance to drug action. Crystallographic studies of these drugs and their complexes have revealed that the fenamate molecules share a striking invariant feature, namely, the sixmembered ring bearing the carboxyl group is coplanar with the carboxyl group and the bridging imino group,the coplanarity being stabilized by resonance interactions and an internal hydrogen bond between the imino and carboxyl groups. The results of the theoretical analysis provide a conformational rationale for the observed invariant coplanarity. The second sixmembered ring, which provides hydrophobicity in a substantial part of the molecule, has limited conformational flexibility in meclofenamic, mefenamic and flufenamic acids. Comparison of the conformational energy maps of these acids shows that they could all assume the same conformation when bound to the relevant enzyme. The present study provides a structural explanation for the difference in the activity of niflumic acid, which can assume a conformation in which the whole molecule is nearly planar. The main role of the carboxyl group appears to be to provide a site for intermolecular interactions in addition to helping in stabilizing the invariant coplanar feature and providing hydrophilicity at one end of the molecule. The fenamates thus provide a good example of conformation- dependent molecular asymmetry.
Resumo:
The study of molecular machines, and protein complexes in general, is a growth area of biology. Is there a computational method for inferring which combinations of proteins in an organism are likely to form a crystallizable complex? We use the Protein Data Bank (PDB) to assess the usefulness of inferred functional protein linkages for this task. We find that of 242 nonredundant prokaryotic protein complexes (complexes excluding structural variants of the same protein) from organisms that are shared between the current PDB and the Prolinks functional linkage database, 44% (107/242) contain proteins that are linked at high-confidence by one or more methods of computed functional linkages. This suggests that computing functional linkages will be useful in defining protein complexes for structural studies. We offer a database of such inferred linkages corresponding to likely protein complexes for some 629,952 pairs of proteins in 154 prokaryotes and archea.
Resumo:
A new case of the uncommon cis-trans enantiomerism is presented. The titled anhydride adducts were prepared in good yields by the known reaction of three 6-arylfulvenes with maleic anhydride (aryl = phenyl, p-tolyl and p-anisyl). The exo adducts were converted to the corresponding imides by reaction with (1S)-1-(naphth-1-yl)ethylamine in similar to 80% yields, and the resulting diastereomeric imides separated by silica gel column chromatography. They were hydrolysed and recyclised to the chiral anhydrides, in `one-pot' with 10% NaOH-EtOH, followed by treatment with 2 M HCl, in similar to 40% yields. The titled anhydrides were thus obtained in homochiral form, in enantiomeric purities (generally) of similar to 90% as indicated by chiral HPLC. The chiral anhydrides were also converted to the corresponding imides (presumably stereospecifically), by treatment with ammonia solution in excellent yields. The crystal structure of one of the above diastereomeric imides (derived from 6-phenylfulvene) was determined, and based on the known (S)-configuration of the naphthylethylamine moiety, the `configurations' of the original anhydride adducts were assigned. (c) 2005 Elsevier Ltd. All rights reserved.
Resumo:
A hydrothermal reaction of a mixture of ZnCl2, V2O5, ethylenediamine and water gave rise to a layered poly oxovanadate material. clusters. These clusters, with all the vanadium ions in the +4 state, are connected together through Zn(NH2(CH2)(2)NH2)(2) linkers forming a two-dimensional structure. The layers are also separated by distorted trigonal bipyramidal [Zn-2(NH2(CH2)(2)NH2)(5)] complexes. The Structure, thus, presents a dual role for the Zn-ethylenediamine complex. The magnetic susceptibility studies indicate that the interactions between the V centres in I are predominantly antiferromagnetic in nature and the compound shows highly frustrated behaviour. The magnetic properties are compared to the theoretical calculations based oil the Heisenberg model, in addition to correlating to the structure. Crystal data for the complexes are presented.
Resumo:
C21H27NO2, Mr=325.5 , orthorhombic,P21212,, a = 7.516 (2), b = 13.430 (2), c =18.047 (2) A, U= 1821.79 A 3, Z = 4, D x =1.186 Mg m -a, 2(Cu Ka) = 1.5418 A, # = 0.56 mm -1, F(000) = 704, T= 293 K, final R = 0.04 for 1892 reflections with I _> 3a(I). Ring A is planar, and rings B and C adopt a chair conformation. Rings D and E are envelopes, with C(14) and C(17) displaced from their respective planes by 0.643 (3) and 0.482 (3)A. The ring system A/B shows quasi-trans fusion, whilst ring systems B/C and C/D are trans fused about C(8)-C(9) and C(13)-C(14) respectively. The D/E junction shows cis fusion.
Resumo:
C2H2N203.H20, Mr= 120.07, monoclinic,P21/c, a= 5.011 (1), b= 11.796(2), c= 7.689 (2)A,fl= 95.22 (2) ° , V= 452.61 A 3, Z= 4, Dx= 1.76, D m = 1.75 gcm -3, /].(Cu Ks) = 1.5418 A, g = 14-0 cm -l,F(000) = 248, T = 293 K, crystal quality was poor and the final R =0.107, wR =0.090 for 881 observed reflections. The compound is derived from a novel form of the monopropellant oxalohydroxamic acid. The two exocyclic C-O bond lengths of 1.240 (3) and 1.228 (4)A indicate double bonds. The C-N bond lengths of 1.334 (4), 1.390 (4) and 1.359 (4) A are characteristic of the amide bond. The N atom covalently bonded to the two carbonyl C atoms acts as a proton donor in an intermolecular hydrogen bond to the ring O atom: N1...O3i = 2.854 ]k (i =x-- 1,y, z), H...O = 2.15 A, N-H...O = 159 °.
Resumo:
CI3H17N5Os.C2H6OS, Mr=401.23, orthorhombic,P21212 p grown from Me2SO, a = 10.749 (2),b = 13.219 (2), c = 14.056 (2) A, V= 1997-23 A 3, Z =4, D_=1.40, D x=l.335Mgm -3, 2(CuKa)= 1.5418/~', g = 1.694 mm -~, F(000) = 848.00, T=293K, R =0.0538, wR =0.0634 for 2105 unique reflections with F > 3o(F). The asymmetric unit contains one nucleoside molecule with a disordered solvent Me2S_O molecule. The geometry about the C(4')-C(5') bond is gauche-gauche. The guanosine base is in the anti conformation with the furanose ring having C(3')-exo (E 3) puckering. The bases do not show any stacking in contrast to other guanosine-containing structures. The crystal structure is stabilized by N--H...N and N--H...O hydrogen bonding.
Resumo:
CI2HI4N206, Mr=282"3, orthorhombic,P21212 t, a = 10.412 (2), b = 14.936 (2), c =16.651(3),/k, V=2589.46A 3, Z--8, Din= 1.450, D x = 1.447 Mg m -3, 2(Cu Kct) = 1.5418/~, # =0.902mm -~, F(000)-- 1184.00, T= 293 K, R = 0.039, wR--0.038 for 2548 unique reflections with F > 3a(F). The two crystallographically independent molecules in the asymmetric unit have similar geome-tries with the ribose ring having an O(4')-exo, C(4')-endo pucker and the uracil base in the anti conformation.The geometry about the exocyclic C(4')-C(5') bond in both molecules is gauche-gauche. The dioxolane ring assumes twist conformations in both molecules.
Resumo:
C~HaO 4, Mr=204.2, monoclinic, P2Jn,a=3.900(1), =37.530(6), c=6.460(1)A, fl=103.7 (1) °, V= 918.5 (5) A 3, Z = 4, D m = 1.443, D x --- 1.476 Mg m -3, Cu Ks, 2 = 1.5418 ,/k, /t = 0.86 mm -~, F(000) = 424, T= 293 K, R = 0.075 for 1019 significant reflections. Molecules pack in fl-type stacking mode which is characterized by the close packing of parallel and nearly planar reactive double bonds with a separation of 3.900/~ along the a axis.The syn head-head dimer obtained is the direct consequence of this packing arrangement. Molecular packing is stabilized by intermolecular C-H...O hydrogen bonding. Analysis of acetoxy...acetoxy interactions in the acetoxy compounds retrieved from the Cambridge Structural Database reveal that the majority of them are anti-dipolar.
Resumo:
C15H22N204.H20 , Mr= 312.37, monoclinic,P21, a=5.577(2), b=8.686(2), c= 16.228 (2) A,fl=92.63(2) ° , V=785(1)A 3, Z=2, O =1.34,Dx= 1.32Mgm -3, CuKa, 2= 1.54184'~, /2=0.78 mm -I, F(000) = 320, T= 293 K. The final R value for 1607 observed reflections ll,,>_3tr(l,,)l is 0.039. The terminal N 1 is protonated and the dipeptide exists as a zwitterion. The crystal structure is stabilized by extensive hydrogen-bonding interactions involving N and O atoms, with N...O in the range 2.65 (1)-2.95 (1) ,/~ and O...O in the range 2.60 (1)-2.78 (1) A.
Resumo:
C~0H~gN5Os.2H20, Mr=325.32, monoclinic,P2~, a = 12.029 (2), b=4.904 (2), c=13.215 (2) A, fl= 107.68 (2) ° , F= 743 (1) A 3, Z= 2,D m = 1-45, D x = 1.45 Mg m -3, Cu Ka, 2 = 1.54184 A,fl= 1.01mm -1, F(000)=348, T=293K. The final R value for 1277 observed reflections 110 >_ 3tr(Io)l is 0.031. The dipeptide exists as a zwitterion. The arginyl side-chain conformation is similar to that found in arginyl-glutamic acid [Pandit, Seshadri & Viswamitra (1983). Acta Cryst. C39, 1669-16721. The guanidyl group forms a pair of hydrogen bonds with oxygen atoms of the backbone carboxyl group. The crystal structure is also stabilized by -bonding interactions involving both water molecules.
Resumo:
CsH9N304, M r= 175.1, orthorhombic,P212~2 ~, a = 7.486 (1), b = 9.919 (2), c =20.279 (2) A, V= 1505.8 A 3, z = 8, D x = 1.54, D m = 1.60 Mg m -3, ~,(Cu Ka) = 1.5418 A, g = 1. I I mm -~, F(000) = 736, T = 300 K, final R = 0.032 for 1345 observed reflections. The two independent molecules in the asymmetric unit are related by a pseudo twofold axis, with the asparagine side chains having different conformations [X 2 being -132.1 (3) and 139.6 (2)°]. The crystal structure is stabilized by extensive hydrogen bonding, with a specific interaction between the carboxyl group of one molecule and the carbamoyl group of another forming hydrogen-bonded chains.