992 resultados para detrital zircon
Resumo:
Early Miocene to Quaternary sediments drilled from the Bengal Fan are divided into six zones by modal proportions of heavy minerals. The sediments were mostly derived from the Himalayas. Detritus from the Indian subcontinent is found sporadically in clay-rich sediments that were deposited during periods of slow sedimentation, when the deep-sea channel migrated away from the drilled sites. The oldest sediments, ranging from 17 to about 15 Ma, were derived mostly from the Precambrian and Paleozoic sedimentary rocks of the lower Himalayas. At about 15 Ma, metamorphic terrains were eroded in the source area. Further large-scale unroofing of metamorphic rocks occurred around 11 Ma. After 10 Ma, the major constituents in the drainage basin or the drainage pattern changed a few times. Between 3.5 and 0.5 Ma, a large peridotite body was unroofed by uplift and successive erosion of the central Himalayas. At this time, the single large river that had supplied detritus to the early Bengal Fan was divided into the Indus and Ganges rivers.
Resumo:
Chemical analyses of North Atlantic D.S.D.P. (Deep Sea Drilling Project) sediments indicate that basal sediments generally contain higher concentrations of Fe, Mn, Mg, Pb, and Ni, and similar or lower concentrations of Ti, Al, Cr, Cu, Zn, and Li than the material overlying them. Partition studies on selected samples indicate that the enriched metals in the basal sediments are usually held in a fashion similar to that in basal sediments from the Pacific, other D.S.D.P. sediments, and modern North Atlantic ridge and non-ridge material. Although, on average, chemical differences between basal sediments of varying ages are apparent, normalization of the data indicates that the processes leading to metal enrichment on the crest of the Mid-Atlantic Ridge appear to have been approximately constant in intensity since Cretaceous times. In addition, the bulk composition of detrital sediments also appears to have been relatively constant over the same time period. Paleocene sediments from site 118 are, however, an exception to this rule, there apparently having been an increased detrital influx during this period. The bulk geochemistry, partitioning patterns, and mineralogy of sediments from D.S.D.P. 9A indicates that post-depositional migration of such elements as Mn, Ni, Cu, Zn, and Pb may have occurred. The basement encountered at the base of site 138 is thought to be a basaltic sill, but the overlying basal sediments are geochemically similar to other metalliferous basal sediments from the North Atlantic. These results, as well as those from site 114 where true oceanic basement was encountered, but where there was an estimated 7 m.y. hiatus between basaltic extrusion and basal sediment deposition, indicate that ridge-crest sediments are not necessarily deposited during active volcanism but can be formed after the volcanism has ceased. The predominant processes for metal enrichment in these deposits and those formed in association with other submarine volcanic features is a combination of shallow hydrothermal activity, submarine weathering of basalt, and the formation of ferromanganese oxides which can scavenge metals from seawater. In addition, it seems as though the formation of submarine metalliferous sediments is not restricted to active-ridge areas.
Resumo:
Sediments recovered from Site 765 can be divided into seven mineral associations, based on differences in clay mineralogy. These clay mineral associations correlate with the lithologic units and reflect the rift-to-drift history of the passive Australian margin. In general, the Lower to mid-Cretaceous sediments represent altered volcanic material and detrital aluminosilicates that were deposited during the early formation of the Argo Basin. The predominant clay mineral is randomly interstratified illite/smectite (I/S) that contains less than 10% illite layers. The transformation of smectite to illite is suggested by an increase in the percentage of illite layers in the basal sediments (from <10% to 40%) that corresponds to the silica transformation of opal-CT to quartz. This mixed-layered illite/smectite has an average composition of (K0.14 Na0.29 C0.07)(Al0.88 Mg0.43 Fe0.61 Ti0.06)(Si3.88 Al0.12)(O)10(OH)2. The highly smectitic composition of the I/S and its association with bentonite layers and zeolite minerals suggest that much of the I/S was derived from the alteration of volcanic material. The condensed middle to Upper Cretaceous sediments consist of palygorskite and detrital I/S that contains 30% to 60% illite layers. The condensed Paleogene sediments contain no palygorskite and are dominated by detrital clay minerals or by highly smectitic I/S associated with bentonite layers and zeolite minerals. The overlying, rapidly deposited Neogene clayey calcareous turbidites consist of three distinct clay mineral associations. Middle Miocene sediments contain palygorskite, kaolinite, and a tentatively identified mixed-layered illite/smectite/chlorite (I/S/C) or saponite. Upper Miocene sediments contain abundant sepiolite and kaolinite and lesser amounts of detrital I/S. Detrital I/S and kaolinite dominate the clay mineralogy of Pliocene and Pleistocene sediments. The fibrous, magnesium-rich clay minerals sepiolite and palygorskite appear to be authigenic and occur intimately associated with authigenic dolomite. The magnesium required to form these Mg-rich minerals was supplied by diffusion from the overlying seawater, and silica was supplied by the dissolution of associated biogenic silica.
Resumo:
in preparation
Resumo:
Despite intensive research on the different domains of the marine phosphorus (P) cycle during the last decades, frequently discussed open questions still exist especially on controlling factors for the benthic behaviour of P and its general distribution in sediment-pore water systems. Steady state or the internal balance of all relevant physical and (bio)geochemical processes are amongst the key issues. In this study we present and discuss an extended data set from surface sediments recovered from three locations on the NW African continental slope. Pore water data and results from sequential sediment extractions give clear evidence to the well-known close relationship between the benthic cycles of P and iron. Accordingly, most of the dissolved phosphate must have been released by microbially catalyzed reductive dissolution of iron (oxhydr)oxides. However, rates of release and association of P and iron, respectively, are not directly represented in profiles of element specific sediment compositions. Results from steady-state based transport-reaction modelling suggest that particle mixing due to active bioturbation, or rather a physical net downward transport of P associated to iron (oxyhydr)oxides, is an essential process for the balance of the inspected benthic cycles. This study emphasizes the importance of balancing analytical data for a comprehensive understanding of all processes involved in biogeochemical cycles.