992 resultados para depth image


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The role of snow depth of Tibetan Plateau in the onset of South China Sea summer monsoon and the influence of ENSO on snow depth of Tibetan Plateau are investigated with use of data from ECMWF reanalysis and NCEP/NCAR reanalysis. The results are as follows: (1) The snow depth data from ECMWF reanalysis are tested and reliable, and can be used to study the influence of snow depth of Tibetan Plateau on the onset of South China Sea summer monsoon; (2) Anomaly of snow depth of Tibetan Plateau causes anomaly in air temperature and its contrast between the Indian Ocean and the continent resulting in easterly wind anomaly over 500 hPa and hence as well as in the atmospheric circulation in the lower layer. For the year of negative anomaly of snow depth a westerly wind anomaly with a cyclone pair takes place, while for positive anomaly of snow depth an easterly anomaly occurs with an anticyclone pair; (3) While positive anomaly of SST occurs in the eastern Pacific Ocean, positive anomaly of air pressure also takes place over the eastern Indian Ocean and the South China Sea, causing stronger meridional pressure gradient between the ocean and continent and then westerly wind anomaly. At the same time, the atmospheric pressure increases in the northern Tibetan Plateau, northerly wind gets stronger, and subtropical front strengthens. All of these are favorable for snowfall over Tibetan Plateau.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Shipboard X-band radar images acquired on 24 June 2009 are used to study nonlinear internal wave characteristics in the northeastern South China Sea. The studied images show three nonlinear internal waves in a packet. A method based on the Radon Transform technique is introduced to calculate internal wave parameters such as the direction of propagation and internal wave velocity from backscatter images. Assuming that the ocean is a two-layer finite depth system, we can derive the mixed-layer depth by applying the internal wave velocity to the mixed-layer depth formula. Results show reasonably good agreement with in-situ thermistor chain and conductivity-temperature-depth data sets.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The mixed layer depth (MLD) in the upper ocean is an important physical parameter for describing the upper ocean mixed layer. We analyzed several major factors influencing the climatological mixed layer depth (CMLD), and established a numerical simulation in the South China Sea (SCS) using the Regional Ocean Model System (ROMS) with a high-resolution (1/12A degrees x1/12A degrees) grid nesting method and 50 vertical layers. Several ideal numerical experiments were tested by modifying the existing sea surface boundary conditions. Especially, we analyzed the sensitivity of the results simulated for the CMLD with factors of sea surface wind stress (SSWS), sea surface net heat flux (SSNHF), and the difference between evaporation and precipitation (DEP). The result shows that of the three factors that change the depth of the CMLD, SSWS is in the first place, when ignoring the impact of SSWS, CMLD will change by 26% on average, and its effect is always to deepen the CMLD; the next comes SSNHF (13%) for deepening the CMLD in October to January and shallowing the CMLD in February to September; and the DEP comes in the third (only 2%). Moreover, we analyzed the temporal and spatial characteristics of CMLD and compared the simulation result with the ARGO observational data. The results indicate that ROMS is applicable for studying CMLD in the SCS area.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Attaining sufficient accuracy and efficiency of generalized screen propagator and improving the quality of input gathers are often problems of wave equation presack depth migration, in this paper,a high order formula of generalized screen propagator for one-way wave equation is proposed by using the asymptotic expansion of single-square-root operator. Based on the formula,a new generalized screen propagator is developed ,which is composed of split-step Fourier propagator and high order correction terms,the new generalized screen propagator not only improving calculation precision without sharply increasing the quantity of computation,facilitates the suitability of generalized screen propagator to the media with strong lateral velocity variation. As wave-equation prestack depth migration is sensitive to the quality of input gathers, which greatly affect the output,and the available seismic data processing system has inability to obtain traveltimes corresponding to the multiple arrivals, to estimate of great residual statics, to merge seismic datum from different projects and to design inverse Q filter, we establish difference equations with an embodiment of Huygens’s principle for obtaining traveltimes corresponding to the multiple arrivals,bring forward a time variable matching filter for seismic datum merging by using the fast algorithm called Mallat tree for wavelet transformations, put forward a method for estimation of residual statics by applying the optimum model parameters estimated by iterative inversion with three organized algorithm,i.e,the CMP intertrace cross-correlation algorithm,the Laplacian image edge extraction algorithm,and the DFP algorithm, and present phase-shift inverse Q filter based on Futterman’s amplitude and phase-velocity dispersion formula and wave field extrapolation theory. All of their numerical and real data calculating results shows that our theory and method are practical and efficient. Key words: prestack depth migration, generalized screen propagator, residual statics,inverse Q filter ,traveltime,3D seismic datum mergence

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Theoretical research, laboratory test and field observation show that most of sediment rock has anisotropic features. It will produce some notable errors when applying isotropic methods such as prestack depth migration and velocity analysis to dada acquired under anisotropic condition; it also has a bad effect on geologic interpretation. Generally speaking, the vertical transverse isotropic media is a good approximation to geologic structure, thus it has an important realistic meaning for anisotropic prestack depth migration theory researching and precise complex geologic imaging if considering anisotropic effect of seismic wave propagation. There are two indispensable parts in prestack depth migration of realistic records, one is proper prestack depth migration algorithm, and the other is velocity analysis using prestack seismic data. The paper consists of the two aspects. Based on implicit finite difference research proposed by Dietrich Ristow et al (1997) about VTI media prestack depth migration, the paper proposed split-step Fourier prestack depth migration algorithm (VTISSF) and Fourier finite difference algorithm (VTIFFD) based on wave equation for VTI media, program are designed and the depth migration method are tested using synthetic model. The result shows that VTISSF is a stable algorithm, it generally gets a good result if the reflector dip is not very steep, while undermigration phenomena appeared in steep dips case; the VTIFFD algorithm bring us better result in steep dips with lower efficiency and frequency dispersion. For anisotropic prestack depth migration velocity analysis of VTI media, The paper discussed the basic hypothesis of VTI model in velocity analysis algorithm, basis of anisotropic prestack depth migration velocity analysis and travel time table calculation of VTI media in integral prestack depth migration. Then , analyzed the P-wave common imaging gather in the case of homogeneous velocity and vertically variable velocity . studied the residual correction in common imaging gather produced by media parameter error, analyzed the condition of flat event and correct depth in common imaging gather . In this case, the anisotropic model parameter vector is , is vertical velocity of a point at top surface, is vertical velocity gradient, and are anisotropic parameter. We can get vertical velocity gradient from seismic data; then the P-wave common imaging gather of VTI media whose velocity varies in vertical and horizontal direction, the relationship between media parameter and event residual time shift of common image gather are studied. We got the condition of flattening common imaging gather with correct depth. In this case the anisotropic model parameter vector is , is velocity gradient in horizontal direction. As a result, the vertical velocity grads can be decided uniquely, but horizontal velocity grads and anisotropic parameter can’t be distinguished if no priori information available, our method is to supply parameter by velocity scanning; then, as soon as is supplied we can get another four parameters of VTI media from seismic data. Based on above analysis, the paper discussed the feasibility of migration velocity analysis in vertically and horizontally varied VTI media, synthetic record of three models are used to test the velocity analysis method . Firstly, anisotropic velocity analysis test is done using a simple model with one block, then we used a model with multiple blocks, thirdly, we analyzed the anisotropic velocity using a part of Marmousi model. The model results show that this velocity analysis method is feasible and correct.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In the complex structure areas, velocity field building and structure mapping are important for seismic exploration. With the development of seismic exploration, the methods of structure mapping, reservoir prediction and reservoir description all require high precious velocity field. And more accurate depth-structure maps are required for well site design. Aiming at the problems and defects in velocity analysis and structure mapping in oil seismic exploration, the paper which is based on the studies of real data in several areas combines the theories with practical application, and analyzes the precision and applicability of several methods of velocity model building. After that, the following methods are mainly studied: the coherence inversion methods based on the pre-stack CMP gathers or stacking velocity; the interval velocity inversion methods constrained by multi-well; the Random Simulation method; 3D Image Ray Map Migration method and the structure mapping in floating datum and in fixed datum, and then we conclude the method of building high precious seismic velocity field and structure mapping with variable velocity. Firstly, the paper analyses the distributing rule of the velocity variation in the areas with complex structures in the northwest of China, then points out that velocity is a crucial factor which influences the precision of structure mapping, and the velocity variations have something to do with the shapes of the structures, the variety of lithology and so on. The key point of improving the precision of seismic velocity field is to obtain a structure mapping with high precision. We also describe the range and conditions of these methods. Secondly, by comparing many popular methods of velocity model building, we propose a new method in the use of velocity model building. The new method is more effective in velocity model building under every kind of complex condition and is worthy of spreading. At last, the paper fingers out that it is a system engineering to study variable velocity mapping in every kind of complex structure areas. Every step of the work can affect the final results. So it is important to build high efficient and practical velocity model and the flows of mapping processing. The paper builds the flows and gives some examples. The method has been applied in more than ten exploring surveys. The application proves that this method could bring good effect on researching on low-amplitude trap, reservoir prediction, reservoir description and the integrated research of oil&gas geology. Keywords: structure mapping velocity model building complex structure variable velocity media

Relevância:

20.00% 20.00%

Publicador:

Resumo:

With the development of oil/gas seismic exploration, seismic survey for fracture/porosity type reservoir is becoming more and more important. As for China, since it has over 60% store of low porosity and low permeability oil/gas reservoir, it’s more urgent to validly describe fracture/porosity type oil/gas trap and proposing the related, developed seismic technique. To achieve mapping fracture/porosity region and its development status, it demands profound understanding of seismic wave propagation discipline in complex fractured/pored media. Meanwhile, it has profound scientific significance and applied worth to study forward modeling of fracture/porosity type media and pre-stacked reverse time migration. Especially, pre-stacked reverse-time migration is the lead edge technique in the field of seismology and seismic exploration. In this paper, the author has summarized the meaning, history and the present state of numerical simulation of seismic propagation in fractured/pored media and seismic exploration of fractured/pored reservoirs. Extensive Dilatancy Anisotropy (EDA) model is selected as media object in this work. As to forward modeling, due to local limitation of solving spatial partial derivative when using finite-difference and finite-element method, the author turns to pseudo-spectral method (PSM), which is based on the global characteristic of Fourier transform to simulate three-component elastic wave-field. Artifact boundary effect reduction and simulation algorithm stability are also discussed in the work. The author has completed successfully forward modeling coding of elastic wave-field and numerical simulation of two-dimensional and three-dimensional EDA models with different symmetric axis. Seismic dynamic and kinematical properties of EDA media are analyzed from time slices and seismic records of wave propagation. As to pre-stacked reverse-time migration for elastic wave-field in fractured/pored media, based on the successful experience in forward modeling results with PSM, the author has studied pre-stacked reverse-time depth-domain migration technique using PSM of elastic wave-field in two dimensional EDA media induced by preferred fracture/pore distribution. At the same time, different image conditions will bring up what kind of migration result is detailed in this paper. The author has worded out software for pre-stacked reverse-time depth-domain migration of elastic wave-field in EDA media. After migration processing of a series of seismic shot gathers, influences to migration from different isotropic and anisotropy models are described in the paper. In summary, following creative research achievements are obtained:  Realizing two-dimensional and three-dimensional elastic wave-field modeling for fractured/pored media and related software has been completed.  Proposed pre-stacked reverse-time depth-domain migration technique using PSM of elastic wave-field.  Through analysis of the seismic dynamic and kinematical properties of EDA media, the author made a conclusion that collection of multi-component seismic data can provide important data basis for locating and describing the fracture/pore regions and their magnitudes and the preferred directions.  Pre-stacked reverse-time depth-domain migration technique has the ability to reconstruct complex geological object with steep formations and tilt fracture distribution. Neglecting seismic anisotropy induced by the preferred fracture/pore distribution, will lead to the disastrous imaging results.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This dissertation starts from the point that the prestack time migration can been considered as an approximation of the prestack depth migration, giving a wave equation based prestack time migration approach. The new approach includes: analytically getting the travel time and amplitude based on the one way wave equation and the stationary-phase theory, using ‘spread’ imaging method and imaging following the prestack depth migration, updating the velocity model with respect to the flats of the events in CRP gathers. Based on this approach, we present a scheme that can image land seismic data without field static correction. We may determine the correct near surface velocities and stack velocities by picking up the residual correction of the events in the CRP gathers. We may get the rational migration section based on the updated velocities and correct the migration section from a floating datum plane to a universal datum plane. We may adaptively determine the migration aperture according to the dips of the imaging structures. This not only speed up the processing, but may suppress the migration noise produce by the extra aperture. We adopt the deconvolution imaging condition of wave equation migration. It may partially compensate the geometric divergence. In this scheme, we use the table-driven technique which may enhance the computational efficiency. If the subsurface is much more complicated, it may be impossible to distinguish the DTS curve. To solve this problem, we proposed a technique to determine the appropriate range of the DTS curve. We synthesize DTS panel in this range using different velocities and depths, and stack the amplitude around the zero time. Determine the correct velocity and location of the considered grid point by comparing the values.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Along with the widespread and in-depth applications in petroleum prospecting and development, the seismic modeling and migration technologies are proposed with a higher requirement by oil industrial, and the related practical demand is getting more and more urgent. Based on theories of modeling and migration methods for wave equation, both related with velocity model, I thoroughly research and develop some methods for the goal of highly effective and practical in this dissertation. In the first part, this dissertation probes into the layout designing by wave equations modeling, focusing on the target-oriented layout designing method guided by wave equation modeling in complicated structure areas. It is implemented by using the fourth order staggered grid finite difference (FD) method in velocity-stress 2D acoustic wave equations plus perfectly matched layer (PML) absorbing boundary condition. To design target-oriented layout: (a) match the synthetic record on the surface with events of subsurface structures by analyzing the snapshots of theoretical model; (b) determine the shot-gather distance by tracking the events of target areas and measuring the receiving range when it reaches the surface; (c) restrict the range of valid shot-gather distance by drawing seismic windows in single shot records; (d) choose the best trace distance by comparing the resolution of prospecting targets from the simulated records with different trace distance. Eventually, we obtained the observation system parameters, which achieve the design requirements. In the second part, this dissertation presents the practical method to improve the 3D Fourier Finite Difference (FFD) migration, and carefully analyzes all the factors which influence 3D FFD migration’s efficiency. In which, one of the most important parameters of migration is the extrapolating step. This dissertation presents an efficient 3D FFD migration algorithm, which use FFD propagator to extrapolate wavefields over big layers, and use Born-Kirchhoff interpolator to image wavefields over small layers between the big ones. Finally, I show the effectiveness of this hybrid migration method by comparing migration results from 3D SEG/EAGE model with different methods.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multi-waves and multi-component get more and more attentions from oil industry. On the basis of existent research results, My research focuses on some key steps of OBC 4C datum processing. OBC datum must be preprocessed quite well for getting a good image. We show a flow chart of preprocess including attenuation of noise on multi-component datum、elimination ghost by summing P and Z and rotation of horizontal components. This is a good foundation for the coming steps about OBC processing. How to get exact converted point location and to analyze velocity are key points in processing reflection seismic converted wave data. This paper includes computing converted point location, analyzing velocity and nonhyperbolic moveout about converted waves. Anisotropic affects deeply the location of converted wave and the nonhyperbolic moveout. Supposed VTI, we research anisotropic effect on converted wave location and the moveout. Since Vp/Vs is important, we research the compute method of Vp/Vs from post-stack data and pre-stack data. It is a part of the paper that inversing anisotropic parameter by traveltime. Pre-stack time migration of converted wave is an focus, using common-offset Kirchhoff migration, we research the velocity model updating in anisotropic media. I have achieved the following results: 1) using continued Fractions, we proposed a new converted point approximate equation, when the offset is long enough ,the thomsen’s 2 order equation can’t approximate to the exact location of converted point, our equation is a good approximate for the exact location. 2) our new methods about scanning nonhyperbolic velocity and Vp/Vs can get a high quality energy spectrum. And the new moveout can fit the middle and long offset events. Processing the field data get a good result. 3) a new moveout equation, which have the same form as Alkhalifah’s long offset P wave moveout equation, have the same degree preciseness as thomsen’s moveout equation by testing model data. 4) using c as a function of the ratio offset to depth, we can uniform the Li’s and thomsen’s moveout equation in a same equation, the model test tell us choice the reasonable function C can improve the exact degree of Li’s and thomsen’s equation. 5) using traveltime inversion ,we can get anisotropic parameter, which can help to flat the large offset event and propose a model of anisotropic parameter which will useful for converted wave pre-stack time migration in anisotropic media. 6)using our pre-stack time migration method and flow, we can update the velocity model and anisotropic parameter model then get good image. Key words: OBC, Common converted Point (CCP), Nonhyperbolic moveout equation, Normal moveout correction, Velocity analysis, Anisotropic parameters inversion, Kirchhoff anisotropic pre-stack time migration, migration velocity model updating

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The function of seismic data in prospecting and exploring oil and gas has exceeded ascertaining structural configuration early. In order to determine the advantageous target area more exactly, we need exactly image the subsurface media. So prestack migration imaging especially prestack depth migration has been used increasingly widely. Currently, seismic migration imaging methods are mainly based on primary energy and most of migration methods use one-way wave equation. Multiple will mask primary and sometimes will be regarded as primary and interferes with the imaging of primary, so multiple elimination is still a very important research subject. At present there are three different wavefield prediction and subtraction methods: wavefield extrapolation; feedback loop; and inverse-scattering series. I mainly do research on feedback loop method in this paper. Feedback loop method includs prediction and subtraction.Currently this method has some problems as follows. Firstly, feedback loop method requires the seismic data used to predict multiple is full wavefield data, but usually the original seismic data don’t meet this assumption, so seismic data must be regularized. Secondly, Multiple predicted through feedback loop method usually can’t match the real multiple in seismic data and they are different in amplitude, phase and arrrival time. So we need match the predicted multiple and that in seismic data through estimating filtering factors and subtract multiple from seismic data. It is the key for multiple elimination how to select a correct matching filtering method. There are many matching filtering methods and I put emphasis on Least-square adaptive matching filtering and L1-norm minimizing adaptive matching filtering methods. Least-square adaptive matching filtering method is computationally very fast, but it has two assumptions: the signal has minimum energy and is orthogonal to the noise. When seismic data don’t meet the two assumptions, this method can’t get good matching results and then can’t attenuate multiple correctly. L1-norm adaptive matching filtering methods can avoid these two assumptions and then get good matching results, but this method is computationally a little slow. The results of my research are as follows: 1. Proposed a method that interpolates seismic traces based on F-K migration and demigration. The main advantage of this method is that it can interpolate seismic traces in any offsets. It shows this method is valid through a simple model. 2. Comparing different Least-square adaptive matching filtering methods. The results show that equipose multi-channel adaptive matching filtering methods can get better results of multiple elimination than other matcing methods through three model data and two field data. 3. Proposed equipose multi-channel L1-norm adaptive matching filtering method. Because L1-norm is robust to large amplitude differences, there are no assumption on the signal has minimum energy and orthogonality, this method can get better results of multiple elimination. 4. Research on multiple elimination in inverse data space. The method is a new multiple elimination method and it is different from those methods mentioned above.The advantages of this method is that it is simple in theory and no need for the adaptive subtraction and computationally very fast. The disadvantage of this method is that it is not stabilized in its solution. The results show that equipose multi-channel and equipose pesudo-multi-channel least-square matching filtering and equipose multi-channel and equipose pesudo-multi-channel L1-norm matching filtering methods can get better results of multiple elimination than other matcing methods through three model data and many field data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

At present, in order to image complex structures more accurately, the seismic migration methods has been developed from isotropic media to the anisotropic media. This dissertation develops a prestack time migration algorithm and application aspects for complex structures systematically. In transversely isotropic media with a vertical symmetry axis (VTI media), the dissertation starts from the theory that the prestack time migration is an approximation of the prestack depth migration, based on the one way wave equation and VTI time migration dispersion relation, by combining the stationary-phase theory gives a wave equation based VTI prestack time migration algorithm. Based on this algorithm, we can analytically obtain the travel time and amplitude expression in VTI media, as while conclude how the anisotropic parameter influence the time migration, and by analyzing the normal moveout of the far offset seismic data and lateral inhomogeneity of velocity, we can update the velocity model and estimate the anisotropic parameter model through the time migration. When anisotropic parameter is zero, this algorithm degenerates to the isotropic time migration algorithm naturally, so we can propose an isotopic processing procedure for imaging. This procedure may keep the main character of time migration such as high computational efficiency and velocity estimation through the migration, and, additionally, partially compensate the geometric divergence by adopting the deconvolution imaging condition of wave equation migration. Application of this algorithm to the complicated synthetic dataset and field data demonstrates the effectiveness of the approach. In the dissertation we also present an approach for estimating the velocity model and anisotropic parameter model. After analyzing the velocity and anisotropic parameter impaction on the time migration, and based on the normal moveout of the far offset seismic data and lateral inhomogeneity of velocity, through migration we can update the velocity model and estimate the anisotropic parameter model by combining the advantages of velocity analysis in isotropic media and anisotropic parameter estimation in VTI media. Testing on the synthetic and field data, demonstrates the method is effective and very steady. Massive synthetic dataset、2D sea dataset and 3D field datasets are used for VTI prestack time migration and compared to the stacked section after NMO and prestack isotropic time migration stacked section to demonstrate that VTI prestack time migration method in this paper can obtain better focusing and less positioning errors of complicated dip reflectors. When subsurface is more complex, primaries and multiples could not be separated in the Radon domain because they can no longer be described with simple functions (parabolic). We propose an attenuating multiple method in the image domain to resolve this problem. For a given velocity model,since time migration takes the complex structures wavefield propagation in to account, primaries and multiples have different offset-domain moveout discrepancies, then can be separated using techniques similar to the prior migration with Radon transform. Since every individual offset-domain common-reflection point gather incorporates complex 3D propagation effects, our method has the advantage of working with 3D data and complicated geology. Testing on synthetic and real data, we demonstrate the power of the method in discriminating between primaries and multiples after prestack time migration, and multiples can be attenuated in the image space considerably.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The seismic wide-angle reflection/refraction method is the one of the most effective method for probing the crustal and upper mantle structure. It mainly uses the wide-angle reflection information from the boundary in the crust and the top boundary of the upper mantle to rebuild the crust and upper mantle structure. Through analyzing the reflection and transmission coefficients of various incident waves on the interface, we think relative to the pre-critical angle reflection information the post critical angle reflection information that received by wide-angle seismic data exists a time-shift effect with the offset variation, and then it must cause the error for velocity analysis and structure image. The feature of the wide-angle seismic wave field of the fourteen representative crust columns tell us that the wide-angle effects in the different representative tectonic units for the interface depth and the interval velocity in crust. We studied the features of the wide-angle seismic wave field through building the crust model and inverse its travel time by GA method to know the wide-angle influence on crustal velocity image. At last we finished the data processing of the Tunxi-Wenzhou wide-angle seismic profile. The results are as following: (1) Through building crust model, we labeled the travel time for all the phases by ray tracing method and remove wide-angle effects method, it revealed the wide-angle effect exists in the seismic data. (2) The travel time inversion by GA method can tell us that the depth by traditional ray tracing method is shallower than the result by remove wide-angle effects method, the latter can recover the crust structure model in effect. (3) We applied the two method mentioned before to the fourteen representative crust columns in China. It indicates that the removed wide-angle effect method in travel time inversion is reasonable and effective. (4) The real data processing from Tunxi-Wenzhou wide-angle seismic profile give us the basic structure through the two ways. The main influence exhibits in the difference of the interval velocity of the curst, and the wide-angle effects in shallow interface are stronger than the deep interface.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

On the subject of oil and gas exploration, migration is an efficacious technique for imagining structures underground. Wave-equation migration (WEM) dominates over other migration methods in accuracy, despite of higher computational cost. However, the advantages of WEM will emerge as the progress of computer technology. WEM is sensitive to velocity model more than others. Small velocity perturbations result in grate divergence in the image pad. Currently, Kirrchhoff method is still very popular in the exploration industry for the reason of difficult to provide precise velocity model. It is very urgent to figure out a way to migration velocity modeling. This dissertation is mainly devoted to migration velocity analysis method for WEM: 1. In this dissertation, we cataloged wave equation prestack depth migration. The concept of migration is introduced. Then, the analysis is applied to different kinds of extrapolate operator to demonstrate their accuracy and applicability. We derived the DSR and SSR migration method and apply both to 2D model. 2. The output of prestack WEM is in form of common image gathers (CIGs). Angle domain common image gathers (ADCIGs) gained by wave equation are proved to be free of artifacts. They are also the most potential candidates for migration velocity analysis. We discussed how to get ADCIGs by DSR and SSR, and obtained ADCIGs before and after imaging separately. The quality of post stack image is affected by CIGs, only the focused or flattened CIGs generate the correct image. Based on wave equation migration, image could be enhanced by special measures. In this dissertation we use both prestack depth residual migration and time shift imaging condition to improve the image quality. 3. Inaccurate velocities lead to errors of imaging depth and curvature of coherent events in CIGs. The ultimate goal of migration velocity analysis (MVA) is to focus scattered event to correct depth and flatten curving event by updating velocities. The kinematic figures are implicitly presented by focus depth aberration and kinetic figure by amplitude. The initial model of Wave-equation migration velocity analysis (WEMVA) is the output of RMO velocity analysis. For integrity of MVA, we review RMO method in this dissertation. The dissertation discusses the general ideal of RMO velocity analysis for flat and dipping events and the corresponding velocity update formula. Migration velocity analysis is a very time consuming work. Respect to computational convenience, we discus how RMO works for synthetic source record migration. In some extremely situation, RMO method fails. Especially in the areas of poorly illuminated or steep structure, it is very difficult to obtain enough angle information for RMO. WEMVA based on wave extrapolate theory, which successfully overcome the drawback of ray based methods. WEMVA inverses residual velocities with residual images. Based on migration regression, we studied the linearized scattering operator and linearized residual image. The key to WEMVA is the linearized residual image. Residual image obtained by Prestack residual migration, which based on DSR is very inefficient. In this dissertation, we proposed obtaining residual migration by time shift image condition, so that, WEMVA could be implemented by SSR. It evidently reduce the computational cost for this method.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 3-D velocity images of the crest and upper mantle beneath the region of 112° -124°E, 28°-39°N including the Dabie-Sulu orogenic belt are reconstructed by using 36405 P-wave arrivals of 3437 regional and 670 distant earthquakes during the period from 1981 to 1996, and gridding the area of 0.5° * 0.5°. The results of tomography demonstrate that: 1. The results of tomographic imaging show a broad heterogeneity in P wave velocity structure for the lithosphere beneath the Dabie-Sulu orogenic belt. 2. In the Dabie orogenic belt, the velocity patterns in the crust are different among various tectonic units. The Dabie and Qinling orogenic belts are remarkable in the tomographic images, and in mm the Hongan and Dabie blocks in the Dabie orogenic belt are also imaged very distinguishably. 3. A velocity (about 5.9~6.0 km/s) layer exists in the Dabie block at depth between 15~25 km, which is coincident with the low-resistance layer at the depth of 12-23 km, being inferred to be the tectonic detachment zone and suggesting that the extension detachment structure was formed in the middle crust. Beneath the southern and northerm Dabie tectonic units, the north-dipping high-velocity (at level of 6.5 ~ 6.6 km/s) block was developed in the crust, which might be correlated with the UHP rockswith low content of the meta-ultramafic rocks. This result is in agreement with the geological observation on the surface. 4. The velocity image at 40 km depth reveals the features at the top of mantle and the configuration of the Moho discontinuity. The depth of the Moho changes slightly along the trend of the orogenic belt. It in Hongan block is less than 40 km, but it is different in the western and eastern parts of the Dabie block, the former is more than 40 km, and the latter less than or equal to 40 km. The remnant of the mountain root exists between the Shangcheng-Macheng fault and the line of Huoshan-Yuexi-Yingshan in the Dabie orogenic belt, and beneath the southern and northern Dabie tectonic units. However, the thickness of the Moho is about 40 km and there is no obvious changes, which suggest that the Dabie orogenic belt has been experienced quite in the gravity equilibration. The Moho's depth in the Sulu is less than 40 km. 5. There is a dipping slab-like high-velocity body in the uppermost mantle. It is sandwiched by slow velocities and exists beneath the Dabie-Sulu orogenic belt in the range of depths between the Moho discontinuity and 110 km at least. This high-velocity body outlines a picture of the slab interpreted as the remnant of the Triassic subducted YZ. 6. The Sulu orogenic belt displays "crocodilian" velocity structure, the upper crust of the Yangtze thrusted over the Huabei crest, and the Huabei crust indented into the Yangtze crust, where the ancient subduction zone of the Yangtze lithosphere located. Based on the previous geological data, this structure is not related with the collision between the Yangtze and Sino-Korean Blocks, but caused by the sinistral offset of the Tan-Lu Fault. Studied on the velocity structure of the eastern Huabei lithosphere indicates: 1. The 'present-day' lithosphere of the eastern Huabei is between 40-100 km thick with greatly thinned lithosphere around the Bohai Sea. Generally, thickness of the lithosphere in this region decreased eastwards. 2. The attenuation of the lithosphere is attributed to the strongly uplift of the asthenosphere. In the area between the Taihang Mountains and the Tan-Lu Fault, there is a 'lever' with red low velocity belt, it is clearly defined, transverse continuity, depth between 100-150 km, local variations visible, and an upwards trend towards the Bohai Sea. Generally, the velocity structure in the mantle beneath the lithosphere displays irregular column-shape consisting of alternating high and low velocities, and when cold high velocity ancient lithosphere connects with the hot low velocity mantle materials forming precipitous compact structure. More heat pathways from the mantle occur towards the Tan-Lu Fault. 3. The strongly irregular characteristics of the contact between the asthenosphere and the lithosphere is induced by the long-term hot, chemical erosion and alteration on the contact. 4. There are still preserved high velocity lithosphedc root beneath Huabei with 'block-shape' distribution and surrounded by hot materials. Results of our studies indicate that the evolution models of the eastern China mantle are characterized by the direct contact between the uplifted lithosphere and the Huabei Craton accompanying the upwelling of the deep mantle materials. At the contact betwen the lithosphere and the asthenosphere, the upwelled mantle materials replaced and altered the lower lithosphere forming the metasome through the hot and chemical modifications impacted on the Craton lithosphere, and changed it into the lithosphere gradually, resulting in the lithospheric thinning. Thus, the lithospheric thinning is the result of the upwelling of the asthenosphere.