993 resultados para data summarization


Relevância:

20.00% 20.00%

Publicador:

Resumo:

An integrated approach of using strandings and bycatch data may provide an indicator of long-term trends for data-limited cetaceans. Strandings programs can give a faithful representation of the species composition of cetacean assemblages, while standardised bycatch rates can provide a measure of relative abundance. Comparing the two datasets may also facilitate managing impacts by understanding which species, sex or sizes are the most vulnerable to interactions with fisheries gear. Here we apply this approach to two long-term datasets in East Australia, bycatch in the Queensland Shark Control Program (QSCP, 1992–2012) and strandings in the Queensland Marine Wildlife Strandings and Mortality Program (StrandNet, 1996–2012). Short-beaked common dolphins, Delphinus delphis, were markedly more frequent in bycatch than in the strandings dataset, suggesting that they are more prone to being incidentally caught than other cetacean species in the region. The reverse was true for humpback whales, Megaptera novaeangliae, bottlenose dolphins, Tursiops spp.; and species predominantly found in offshore waters. QSCP bycatch was strongly skewed towards females for short-beaked common dolphins, and towards smaller sizes for Australian humpback dolphins, Sousa sahulensis. Overall, both datasets demonstrated similar seasonality and a similar long-term increase from 1996 until 2008. Analysis on a species-by-species basis was then used to explore potential explanations for long-term trends, which ranged from a recovering stock (humpback whales) to a shift in habitat use (short-beaked common dolphins).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Despite considerable effort and a broad range of new approaches to safety management over the years, the upstream oil & gas industry has been frustrated by the sector’s stubbornly high rate of injuries and fatalities. This short communication points out, however, that the industry may be in a position to make considerable progress by applying “Big Data” analytical tools to the large volumes of safety-related data that have been collected by these organizations. Toward making this case, we examine existing safety-related information management practices in the upstream oil & gas industry, and specifically note that data in this sector often tends to be highly customized, difficult to analyze using conventional quantitative tools, and frequently ignored. We then contend that the application of new Big Data kinds of analytical techniques could potentially reveal patterns and trends that have been hidden or unknown thus far, and argue that these tools could help the upstream oil & gas sector to improve its injury and fatality statistics. Finally, we offer a research agenda toward accelerating the rate at which Big Data and new analytical capabilities could play a material role in helping the industry to improve its health and safety performance.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A central tenet in the theory of reliability modelling is the quantification of the probability of asset failure. In general, reliability depends on asset age and the maintenance policy applied. Usually, failure and maintenance times are the primary inputs to reliability models. However, for many organisations, different aspects of these data are often recorded in different databases (e.g. work order notifications, event logs, condition monitoring data, and process control data). These recorded data cannot be interpreted individually, since they typically do not have all the information necessary to ascertain failure and preventive maintenance times. This paper presents a methodology for the extraction of failure and preventive maintenance times using commonly-available, real-world data sources. A text-mining approach is employed to extract keywords indicative of the source of the maintenance event. Using these keywords, a Naïve Bayes classifier is then applied to attribute each machine stoppage to one of two classes: failure or preventive. The accuracy of the algorithm is assessed and the classified failure time data are then presented. The applicability of the methodology is demonstrated on a maintenance data set from an Australian electricity company.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It is common to model the dynamics of fisheries using natural and fishing mortality rates estimated independently using two separate analyses. Fishing mortality is routinely estimated from widely available logbook data, whereas natural mortality estimations have often required more specific, less frequently available, data. However, in the case of the fishery for brown tiger prawn (Penaeus esculentus) in Moreton Bay, both fishing and natural mortality rates have been estimated from logbook data. The present work extended the fishing mortality model to incorporate an eco-physiological response of tiger prawn to temperature, and allowed recruitment timing to vary from year to year. These ecological characteristics of the dynamics of this fishery were ignored in the separate model that estimated natural mortality. Therefore, we propose to estimate both natural and fishing mortality rates within a single model using a consistent set of hypotheses. This approach was applied to Moreton Bay brown tiger prawn data collected between 1990 and 2010. Natural mortality was estimated by maximum likelihood to be equal to 0.032 ± 0.002 week−1, approximately 30% lower than the fixed value used in previous models of this fishery (0.045 week−1).

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: 1. Estimate population parameters required for a management model. These include survival, density, age structure, growth, age and size at maturity and at recruitment to the adult eel fishery. Estimate their variability among individuals in a range of habitats. 2. Develop a management population dynamics model and use it to investigate management options. 3. Establish baseline data and sustainability indicators for long-term monitoring. 4. Assess the applicability of the above techniques to other eel fisheries in Australia, in collaboration with NSW. Distribute developed tools via the Australia and New Zealand Eel Reference Group.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Network data packet capture and replay capabilities are basic requirements for forensic analysis of faults and security-related anomalies, as well as for testing and development. Cyber-physical networks, in which data packets are used to monitor and control physical devices, must operate within strict timing constraints, in order to match the hardware devices' characteristics. Standard network monitoring tools are unsuitable for such systems because they cannot guarantee to capture all data packets, may introduce their own traffic into the network, and cannot reliably reproduce the original timing of data packets. Here we present a high-speed network forensics tool specifically designed for capturing and replaying data traffic in Supervisory Control and Data Acquisition systems. Unlike general-purpose "packet capture" tools it does not affect the observed network's data traffic and guarantees that the original packet ordering is preserved. Most importantly, it allows replay of network traffic precisely matching its original timing. The tool was implemented by developing novel user interface and back-end software for a special-purpose network interface card. Experimental results show a clear improvement in data capture and replay capabilities over standard network monitoring methods and general-purpose forensics solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Variety selection in perennial pasture crops involves identifying best varieties from data collected from multiple harvest times in field trials. For accurate selection, the statistical methods for analysing such data need to account for the spatial and temporal correlation typically present. This paper provides an approach for analysing multi-harvest data from variety selection trials in which there may be a large number of harvest times. Methods are presented for modelling the variety by harvest effects while accounting for the spatial and temporal correlation between observations. These methods provide an improvement in model fit compared to separate analyses for each harvest, and provide insight into variety by harvest interactions. The approach is illustrated using two traits from a lucerne variety selection trial. The proposed method provides variety predictions allowing for the natural sources of variation and correlation in multi-harvest data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Many educational researchers conducting studies in non-English speaking settings attempt to report on their project in English to boost their scholarly impact. It requires preparing and presenting translations of data collected from interviews and observations. This paper discusses the process and ethical considerations involved in this invisible methodological phase. The process includes activities prior to data analysis and to its presentation to be undertaken by the bilingual researcher as translator in order to convey participants’ original meanings as well as to establish and fulfil translation ethics. This paper offers strategies to address such issues; the most appropriate translation method for qualitative study; and approaches to address political issues when presenting such data.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Early detection of (pre-)signs of ulceration on a diabetic foot is valuable for clinical practice. Hyperspectral imaging is a promising technique for detection and classification of such (pre-)signs. However, the number of the spectral bands should be limited to avoid overfitting, which is critical for pixel classification with hyperspectral image data. The goal was to design a detector/classifier based on spectral imaging (SI) with a small number of optical bandpass filters. The performance and stability of the design were also investigated. The selection of the bandpass filters boils down to a feature selection problem. A dataset was built, containing reflectance spectra of 227 skin spots from 64 patients, measured with a spectrometer. Each skin spot was annotated manually by clinicians as "healthy" or a specific (pre-)sign of ulceration. Statistical analysis on the data set showed the number of required filters is between 3 and 7, depending on additional constraints on the filter set. The stability analysis revealed that shot noise was the most critical factor affecting the classification performance. It indicated that this impact could be avoided in future SI systems with a camera sensor whose saturation level is higher than 106, or by postimage processing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The possible nonplanar distortions of the amide group in formamide, acetamide, N-methylacetamide, and N-ethylacetamide have been examined using CNDO/2 and INDO methods. The predictions from these methods are compared with the results obtained from X-ray and neutron diffraction studies on crystals of small open peptides, cyclic peptides, and amides. It is shown that the INDO results are in good agreement with observations, and that the dihedral angles N and defining the nonplanarity of the amide unit are correlated approximately by the relation N = -2, while C is small and uncorrelated with . The present study indicates that the nonplanar distortions at the nitrogen atom of the peptide unit may have to be taken into consideration, in addition to the variation in the dihedral angles (,), in working out polypeptide and protein structures.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

This study identified the areas of poor specificity in national injury hospitalization data and the areas of improvement and deterioration in specificity over time. A descriptive analysis of ten years of national hospital discharge data for Australia from July 2002-June 2012 was performed. Proportions and percentage change of defined/undefined codes over time was examined. At the intent block level, accidents and assault were the most poorly defined with over 11% undefined in each block. The mechanism blocks for accidents showed a significant deterioration in specificity over time with up to 20% more undefined codes in some mechanisms. Place and activity were poorly defined at the broad block level (43% and 72% undefined respectively). Private hospitals and hospitals in very remote locations recorded the highest proportion of undefined codes. Those aged over 60 years and females had the higher proportion of undefined code usage. This study has identified significant, and worsening, deficiencies in the specificity of coded injury data in several areas. Focal attention is needed to improve the quality of injury data, especially on those identified in this study, to provide the evidence base needed to address the significant burden of injury in the Australian community.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

It has long been thought that tropical rainfall retrievals from satellites have large errors. Here we show, using a new daily 1 degree gridded rainfall data set based on about 1800 gauges from the India Meteorology Department (IMD), that modern satellite estimates are reasonably close to observed rainfall over the Indian monsoon region. Daily satellite rainfalls from the Global Precipitation Climatology Project (GPCP 1DD) and the Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) are available since 1998. The high summer monsoon (June-September) rain over the Western Ghats and Himalayan foothills is captured in TMPA data. Away from hilly regions, the seasonal mean and intraseasonal variability of rainfall (averaged over regions of a few hundred kilometers linear dimension) from both satellite products are about 15% of observations. Satellite data generally underestimate both the mean and variability of rain, but the phase of intraseasonal variations is accurate. On synoptic timescales, TMPA gives reasonable depiction of the pattern and intensity of torrential rain from individual monsoon low-pressure systems and depressions. A pronounced biennial oscillation of seasonal total central India rain is seen in all three data sets, with GPCP 1DD being closest to IMD observations. The new satellite data are a promising resource for the study of tropical rainfall variability.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

An application that translates raw thermal melt curve data into more easily assimilated knowledge is described. This program, called ‘Meltdown’, performs a number of data remediation steps before classifying melt curves and estimating melting temperatures. The final output is a report that summarizes the results of a differential scanning fluorimetry experiment. Meltdown uses a Bayesian classification scheme, enabling reproducible identification of various trends commonly found in DSF datasets. The goal of Meltdown is not to replace human analysis of the raw data, but to provide a sensible interpretation of the data to make this useful experimental technique accessible to naïve users, as well as providing a starting point for detailed analyses by more experienced users.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Compositional data analysis usually deals with relative information between parts where the total (abundances, mass, amount, etc.) is unknown or uninformative. This article addresses the question of what to do when the total is known and is of interest. Tools used in this case are reviewed and analysed, in particular the relationship between the positive orthant of D-dimensional real space, the product space of the real line times the D-part simplex, and their Euclidean space structures. The first alternative corresponds to data analysis taking logarithms on each component, and the second one to treat a log-transformed total jointly with a composition describing the distribution of component amounts. Real data about total abundances of phytoplankton in an Australian river motivated the present study and are used for illustration.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A new clustering technique, based on the concept of immediato neighbourhood, with a novel capability to self-learn the number of clusters expected in the unsupervized environment, has been developed. The method compares favourably with other clustering schemes based on distance measures, both in terms of conceptual innovations and computational economy. Test implementation of the scheme using C-l flight line training sample data in a simulated unsupervized mode has brought out the efficacy of the technique. The technique can easily be implemented as a front end to established pattern classification systems with supervized learning capabilities to derive unified learning systems capable of operating in both supervized and unsupervized environments. This makes the technique an attractive proposition in the context of remotely sensed earth resources data analysis wherein it is essential to have such a unified learning system capability.