991 resultados para damage mechanism
Resumo:
This paper describes a proposed admittance enhanced redundant joint mechanism (AERJM) which allows greater flexibility in the design of robotic joints. First, the basic concept of a redundant joint mechanism that reduces joint inertia is explained. Second, the AERJM structure is discussed. AERJM consists of a redundancy introducing mechanism (RIM), the adjustable admittance mechanism (AAM) and an admittance enhancing actuator. The working principles of the AERJM concept are analysed. The design and a working prototype, consisting of a variable reduction mechanism, along with a spring and a damper with constant coefficients, are described.
Resumo:
The aim of this work was to examine a possible association between resistance of two Escherichia coli strains to high hydrostatic pressure and the susceptibility of their cell membranes to pressure-induced damage. Cells were exposed to pressures between 100 and 700 MPa at room temperature (~20C) in phosphate-buffered-saline. In the more pressure-sensitive strain E. coli 8164, loss of viability occurred at pressures between 100 MPa and 300 MPa and coincided with irreversible loss of membrane integrity as indicated by uptake of propidium iodide (PI) and leakage of protein of molecular mass between 9 and 78 kDa from the cells. Protein release increased to a maximum at 400 MPa then decreased, possibly due to intracellular aggregation at the higher pressures. In the pressure-resistant strain E. coli J1, PI was taken up during pressure treatment but not after decompression indicating that cells were able to reseal their membranes. Loss of viability in strain J1 coincided with the transient loss of membrane integrity between approximately 200 MPa and 600 MPa. In E. coli J1 leakage of protein occurred before loss of viability and the released protein was of low molecular mass, between 8 and 11 kDa and may have been of periplasmic origin. In these two strains differences in pressure resistance appeared to be related to differences in the ability of their membranes to withstand disruption by pressure. However it appears that transient loss of membrane integrity during pressure can lead to cell death irrespective of whether cells can reseal their membranes afterwards.
Resumo:
Aims: The aim was to evaluate (i) the resistance of Escherichia coli BJ4 to citral in a buffer system as a function of citral concentration, treatment medium pH, storage time and initial inoculum size, (ii) the role of the sigma factor RpoS on citral resistance of E. coli, (iii) the role of the cell envelope damage in the mechanism of microbial inactivation by citral, and (iii) possible synergistic effects of mild heat treatment and pulsed-electric fields (PEF) treatment combined with citral. Methods and Results: The initial inoculum size greatly affected the efficacy of citral against E. coli cells. Exposure to 200 µl l-1of citral at pH 4.0 for 24 h at 20 ºC caused the inactivation of more than 5 log10 cycles of cells starting at an inoculum size of 106 or 107 CFU ml-1, whereas increasing the cell concentration to 109 CFU ml-1 caused less than 1 log10 cycle of inactivation. E. coli showed higher resistance to citral at pH 4.0 than pH 7.0. The rpoS null mutant strain E. coli BJ4L1 was less resistant to citral than the wild-type strain. Occurrence of sublethal injury to both, the cytoplasmic and outer membranes was demonstrated by adding sodium chloride or bile salts to the recovery media. The majority of sublethally-injured cells by citral required energy and lipid synthesis for repair. A strongly synergistic lethal effect was shown by mild heat treatment combined with citral but the presence of citral during the application of a PEF treatment did not show any advantage. Conclusions: This work confirms that cell envelope damage is an important event in citral inactivation of bacteria, and it describes the key factors on the inactivation of E. coli cells by citral. Significance and Impact of Study: Knowledge about the mechanism of microbial inactivation by citral helps establish successful combined preservation treatments.
Resumo:
Alterations to the genetic code – codon reassignments – have occurred many times in life’s history, despite the fact that genomes are coadapted to their genetic codes and therefore alterations are likely to be maladaptive. A potential mechanism for adaptive codon reassignment, which could trigger either a temporary period of codon ambiguity or a permanent genetic code change, is the reactivation of a pseudogene by a nonsense suppressor mutant transfer RNA. I examine the population genetics of each stage of this process and find that pseudogene rescue is plausible and also readily explains some features of extant variability in genetic codes.
Resumo:
This paper describes time-resolved x-ray diffraction data monitoring the transformation of one inverse bicontinuous cubic mesophase into another, in a hydrated lipid system. The first section of the paper describes a mechanism for the transformation that conserves the topology of the bilayer, based on the work of Charvolin and Sadoc, Fogden and Hyde, and Benedicto and O'Brien in this area. We show a pictorial representation of this mechanism, in terms of both the water channels and the lipid bilayer. The second section describes the experimental results obtained. The system under investigation was 2:1 lauric acid: dilauroylphosphatidylcholine at a hydration of 50% water by weight. A pressure-jump was used to induce a phase transition from the gyroid (Q(II)(G)) to the diamond (Q(II)(D)) bicontinuous cubic mesophase, which was monitored by time-resolved x-ray diffraction. The lattice parameter of both mesophases was found to decrease slightly throughout the transformation, but at the stage where the Q(II)(D) phase first appeared, the ratio of lattice parameters of the two phases was found to be approximately constant for all pressure-jump experiments. The value is consistent with a topology-preserving mechanism. However, the polydomain nature of our sample prevents us from confirming that the specific pathway is that described in the first section of the paper. Our data also reveal signals from two different intermediate structures, one of which we have identified as the inverse hexagonal (H-II) mesophase. We suggest that it plays a role in the transfer of water during the transformation. The rate of the phase transition was found to increase with both temperature and pressure-jump amplitude, and its time scale varied from the order of seconds to minutes, depending on the conditions employed.
Resumo:
Allochthonous Norway spruce stands in the Kysucké Beskydy Mts. (north-western Slovakia) have been exposed to substantial acid deposition in the recent past and grow in acidified soil conditions with mean pH of about 4.0 in the topsoil. We selected 90 spruce trees representing 30 triples of different crown status: healthy, stressed and declining to assess the relationship between crown and fine root status. Sequential coring and in-growth bags were applied to each triplet to investigate fine root biomass and growth in the soil depths of 0-10 and 10-20 cm. Fine root quantity (biomass and necromass), turnover (production over standing stock), morphological features (specific root length, root tip density) and chemical properties (Ca:Al molar ratio) were compared among the abovementioned health status categories. Living fine root biomass decreased with increasing stress, while the ratio of living to dead biomass increased. Annual fine root production decreased and specific root length increased in stressed trees when compared to healthy or declining trees, a situation which may be related to the position of trees in the canopy (healthy and declining – dominant, stressed – co-dominant). The Ca:Al ratio decreased with increasing crown damage, indicating a decreased ability to filter out aluminium. In conclusion, fine root status appears to be linked to visible crown damage and can be used as a tree health indicator.
Resumo:
Much recent interest has focused on the potential of flavonoids to interact with intracellular signaling pathways such as with the mitogen-activated protein kinase cascade. We have investigated whether the observed strong neurotoxic potential of quercetin in primary cortical neurons may occur via specific and sensitive interactions within neuronal mitogen-activated protein kinase and Akt/protein kinase B (PKB) signaling cascades, both implicated in neuronal apoptosis. Quercetin induced potent inhibition of both Akt/PKB and ERK phosphorylation, resulting in reduced phosphorylation of BAD and a strong activation of caspase-3. High quercetin concentrations (30 microM) led to sustained loss of Akt phosphorylation and subsequent Akt cleavage by caspase-3, whereas at lower concentrations (<10 microM) the inhibition of Akt phosphorylation was transient and eventually returned to basal levels. Lower levels of quercetin also induced strong activation of the pro-survival transcription factor cAMP-responsive element-binding protein, although this did not prevent neuronal damage. O-Methylated quercetin metabolites inhibited Akt/PKB to lesser extent and did not induce such strong activation of caspase-3, which was reflected in the lower amount of damage they inflicted on neurons. In contrast, neither quercetin nor its O-methylated metabolites had any measurable effect on c-Jun N-terminal kinase phosphorylation. The glucuronide of quercetin was not toxic and did not evoke any alterations in neuronal signaling, probably reflecting its inability to enter neurons. Together these data suggest that quercetin and to a lesser extent its O-methylated metabolites may induce neuronal death via a mechanism involving an inhibition of neuronal survival signaling through the inhibition of both Akt/PKB and ERK rather than by an activation of the c-Jun N-terminal kinase-mediated death pathway.
Resumo:
The ultraviolet A component of sunlight causes both acute and chronic damage to human skin. In this study the potential of epicatechin, an abundant dietary flavanol, and 3'-O-methyl epicatechin, one of its major in vivo metabolites, to protect against UVA-induced damage was examined using cultured human skin fibroblasts as an in vitro model. The results obtained clearly show that both epicatechin and its metabolite protect these fibroblasts against UVA damage and cell death. The hydrogen-donating antioxidant properties of these compounds are probably not the mediators of this protective response. The protection is a consequence of induction of resistance to UVA mediated by the compounds and involves newly synthesized proteins. The study provides clear evidence that this dietary flavanol has the potential to protect human skin against the deleterious effects of sunlight.
Resumo:
Clusters of computers can be used together to provide a powerful computing resource. Large Monte Carlo simulations, such as those used to model particle growth, are computationally intensive and take considerable time to execute on conventional workstations. By spreading the work of the simulation across a cluster of computers, the elapsed execution time can be greatly reduced. Thus a user has apparently the performance of a supercomputer by using the spare cycles on other workstations.
Resumo:
We outline a method to determine the direction of solar open flux transport that results from the opening of magnetic clouds (MCs) by interchange reconnection at the Sun based solely on in-situ observations. This method uses established findings about i) the locations and magnetic polarities of emerging MC footpoints, ii) the hemispheric dependence of the helicity of MCs, and iii) the occurrence of interchange reconnection at the Sun being signaled by uni-directional suprathermal electrons inside MCs. Combining those observational facts in a statistical analysis of MCs during solar cycle 23 (period 1995 – 2007), we show that the time of disappearance of the northern polar coronal hole (1998 – 1999), permeated by an outward-pointing magnetic field, is associated with a peak in the number of MCs originating from the northern hemisphere and connected to the Sun by outward-pointing magnetic field lines. A similar peak is observed in the number of MCs originating from the southern hemisphere and connected to the Sun by inward-pointing magnetic field lines. This pattern is interpreted as the result of interchange reconnection occurring between MCs and the open field lines of nearby polar coronal holes. This reconnection process closes down polar coronal hole open field lines and transports these open field lines equatorward, thus contributing to the global coronal magnetic field reversal process. These results will be further constrainable with the rising phase of solar cycle 24.
Resumo:
Fermented dairy products and their component bacteria have been shown to possess health-promoting functions in consumers and recently have been suggested to reduce the risk of colorectal cancer. Kefir and ayran are two popular fermented milk drinks that have their origins in the Caucasus region of Russia. The present study aimed to evaluate their potential anticancer properties in colon cells in vitro. The comet assay and transepithelial resistance assay were used to assess the effect of kefir and ayran supernatants on genotoxicity of fecal water samples and on intestinal tight junction integrity. Their antioxidant capacity was measured by trolox equivalent antioxidant capacity assay and compared with that of unfermented milk. The results showed that DNA damage induced by 2 of 4 fecal water samples was significantly decreased by kefir and ayran supernatants and with ayran the effect was dose-dependent. However no effect on intestinal tight junctions was observed. The supernatants of kefir and ayran contained high amounts of acetic and lactic acid but only a very small quantity of caproic and butyric acid, and they showed significantly greater antioxidant capacity than milk. These findings suggest kefir and ayran can reduce DNA damage, which might be due to their antioxidant capacities.