1000 resultados para d18O


Relevância:

10.00% 10.00%

Publicador:

Resumo:

A variety of evidence suggests that average sea surface temperatures (SSTs) during the last glacial maximum in the California Borderlands region were significantly colder than during the Holocene. Planktonic foraminiferal delta18O evidence and average SST estimates derived by the modern analog technique indicate that temperatures were 6°-10°C cooler during the last glacial relative to the present. The glacial plankton assemblage is dominated by the planktonic foraminifer Neogloboquadrina pachyderma (sinistral coiling) and the coccolith Coccolithus pelagicus, both of which are currently restricted to subpolar regions of the North Pacific. The glacial-interglacial average SST change determined in this study is considerably larger than the 2°C change estimated by Climate: Long-Range Investigation, Mapping, and Prediction (CLIMAP) [1981]. We propose that a strengthened California Current flow was associated with the advance of subpolar surface waters into the Borderlands region during the last glacial.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A combination of changes in the species composition of the radiolarian populations, and in the sediment chemical composition (content and mass accumulation rates of carbonate, organic carbon, and selected major and trace elements, with special attention paid to Ba) is used to reconstruct the variations in upwelling activity over the last 250 kyr in the Socotra gyre area (Somali-Socotra upwelling system, NW Indian Ocean). In the Socotra gyre (Core MD 962073 at 10°N), the variations in upwelling intensity are reconstructed by the upwelling radiolarian index (URI) while the thermocline/surface radiolarian index (TSRI) testifies to productivity variations during non-upwelling intervals. Despite an origin related both to marine and terrigenous inputs, the geochemical records of organic carbon, silica, and trace elements (Ba, P, Cu, and Zn) normalized to Al are controlled by the variations in surface paleoproductivity. The data indicate a continuous increase in upwelling intensity during the last 250 kyr with a maximum activity within the MIS 3, while high productivity periods in between the upwelling seasons occurred both during glacial and interglacial intervals. A comparison of our data with published observations from another gyre of the Somalian upwelling area located at 5°N in the Somali gyre area shows differences regarding periods of upwelling activity and their geochemical imprint. Three hypotheses are proposed to explain these differences: (1) changes in the planktonic community, resulting in more silica-rich deposits in the Socotra gyre, and more carbonate-rich deposits in the Somali gyre, that are controlled by differences in the source water of the upwelling; (2) a more important terrigenous input in the southern gyre; and (3) a different location of the sites relative to the geographic distribution of the upwelling gyres and hydrologic fronts.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A moderate-resolution isotope stratigraphy (with an average of one sample per 17,500 yr.) derived from the benthic foraminifer Uvigerina (or Cibicides), the planktonic foraminifer Globigerina bulloides, and calcareous nannofossil concentrates is presented for the entire Quaternary (and latest Pliocene) section of mid-upper bathyal calcareous oozes from DSDP Site 593, western Challenger Plateau, south Tasman Sea. Superimposed on a trend of gradually increasing average delta18O values through the Pleistocene, reflecting the progressive buildup of polar ice sheets, is a record of highfrequency but generally low amplitude (0.5-1?) isotope fluctuations in the early Quaternary (1.9-1.0 m.y.), followed by a greatly increased intensity (1.5-2.0 ?) of glacial-interglacial fluctuations during the late Quaternary (< 1.0 m.y.). The standard late Quaternary isotope stages 1 to 24 are mainly resolvable. Significant excursions in both delta18O and delta13C values at various times during the Quaternary are suggested to be due to periodic, fundamental changes in ocean circulation properties over the plateau. For example, intensified upwelling of Antarctic Intermediate Waters during several glacial periods is indicated by the convergence of benthic and planktonic foraminiferal delta18O data, and productivity variations may account for certain delta13C spikes in the record. With increasingly higher resolution analysis this core will provide a useful Quaternary isotope reference section for southern temperate waters in the southwest Pacific, centered on New Zealand.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Lower ocean crust is primarily gabbroic, although 1-2% felsic igneous rocks that are referred to collectively as plagiogranites occur locally. Recent experimental evidence suggests that plagiogranite magmas can form by hydrous partial melting of gabbro triggered by seawater-derived fluids, and thus they may indicate early, high-temperature hydrothermal fluid circulation. To explore seawater-rock interaction prior to and during the genesis of plagiogranite and other late-stage magmas, oxygen-isotope ratios preserved in igneous zircon have been measured by ion microprobe. A total of 197 zircons from 43 plagiogranite, evolved gabbro, and hydrothermally altered fault rock samples have been analyzed. Samples originate primarily from drill core acquired during Ocean Drilling Program and Integrated Ocean Drilling Program operations near the Mid-Atlantic and Southwest Indian Ridges. With the exception of rare, distinctively luminescent rims, all zircons from ocean crust record remarkably uniform d18O with an average value of 5.2 ± 0.5 per mil (2SD). The average d18O(Zrc) would be in magmatic equilibrium with unaltered MORB [d18O(WR) ~5.6-5.7 per mil], and is consistent with the previously determined value for equilibrium with the mantle. The narrow range of measured d18O values is predicted for zircon crystallization from variable parent melt compositions and temperatures in a closed system, and provides no indication of any interactions between altered rocks or seawater and the evolved parent melts. If plagiogranite forms by hydrous partial melting, the uniform mantle-like d18O(Zrc) requires melting and zircon crystallization prior to significant amounts of water-rock interactions that alter the protolith d18O. Zircons from ocean crust have been proposed as a tectonic analog for >3.9 Ga detrital zircons from the earliest (Hadean) Earth by multiple workers. However, zircons from ocean crust are readily distinguished geochemically from zircons formed in continental crustal environments. Many of the >3.9 Ga zircons have mildly elevated d18O (6.0-7.5 per mil), but such values have not been identified in any zircons from the large sample suite examined here. The difference in d18O, in combination with newly acquired lithium concentrations and published trace element data, clearly shows that the >3.9 Ga detrital zircons did not originate by processes analogous to those in modern mid-ocean ridge settings.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon cycling is an important but poorly understood process on passive continental margins. In this study, we use the ionic and stable isotopic composition of interstitial waters and the petrology, mineralogy, and stable isotopic composition of authigenic carbonates collected from Ocean Drilling Program (ODP) Leg 174A (Sites 1071 and 1072) to constrain the origin of the carbonates and the evolution of methane on the outer New Jersey shelf. The pore fluids of the New Jersey continental shelf are characterized by (1) a fresh-brackish water plume, and (2) organic matter degradation reactions, which proceed through sulfate reduction. However, only minor methanogenesis occurs. The oxygen isotopic composition of the pore fluids supports a meteoric origin of the low salinity fluids. Authigenic carbonates are found in nodules, thin (~1-cm) layers, and carbonate cemented pavements. Siderite is the most common authigenic carbonate, followed by dolomite and calcite. The oxygen isotopic composition of the authigenic carbonates, i.e. 1.3-6.5 per mil PeeDee Belemnite (PDB), indicates an origin in marine pore fluids. The carbon isotopic composition of dolomite cements range from -16.4 to -8.8 per mil PDB, consistent with formation within the zone of sulfate reduction. Siderite d13C values show a greater range (-17.67-16.4 per mil), but are largely positive (mean=2.8 per mil) and are interpreted to have formed throughout the zone of methanogenesis. In contrast, calcite d13C values are highly negative (as low as -41.7 per mil)and must have formed from waters with a large component of dissolved inorganic carbon derived from methane oxidation. Pore water data show that despite complete sulfate reduction, methanogenesis appears not to be an important process presently occurring in the upper 400 m of the outer New Jersey shelf. In contrast, the carbon isotopic composition of the siderites and calcites document an active methanogenic zone during their formation. The methane may have been either oxidized or vented from shelf sediments, perhaps during sea-level fluctuations. If this unaccounted and variable methane flux is an areally important process during Neogene sea-level fluctuations, then it likely plays an important role in long-term carbon cycling on passive continental margins

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Carbon, hydrogen, and oxygen isotope ratios determined on 32 squeezed interstitial fluid samples show remarkable variations with depth. For the most part these variations are related to diagenetic and alteration reactions taking place in the sediments, and in the underlying basalts. delta13C SumCO2 depth distributions at Sites 642 and 643 are the result of mixing of original SumCO2 of the paleo bottom water with SumCO2 released by remineralization of organic matter. At Site 644, where sulfate exhaustion occurs, the processes of methanogenesis by CO2 reduction and anaerobic methanotrophy strongly influence the delta13C SumCO2 distribution. Hydrogen and oxygen isotopes roughly covary, and become enriched in 16O and1H with depth. This effect is most pronounced at Sites 642 and 643, possibly due to the influence of the directly underlying basalts. Isotope depletions at Site 644 are much lower, corresponding to the greater sediment depth to basement. The alternative, that the O, H isotope shifts are due primarily to autochthonous diagenetic and exchange reactions, is not supported by the data available.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The climate during the Cenozoic era changed in several steps from ice-free poles and warm conditions to ice-covered poles and cold conditions. Since the 1950s, a body of information on ice volume and temperature changes has been built up predominantly on the basis of measurements of the oxygen isotopic composition of shells of benthic foraminifera collected from marine sediment cores. The statistical methodology of time series analysis has also evolved, allowing more information to be extracted from these records. Here we provide a comprehensive view of Cenozoic climate evolution by means of a coherent and systematic application of time series analytical tools to each record from a compilation spanning the interval from 4 to 61 Myr ago. We quantitatively describe several prominent features of the oxygen isotope record, taking into account the various sources of uncertainty (including measurement, proxy noise, and dating errors). The estimated transition times and amplitudes allow us to assess causal climatological-tectonic influences on the following known features of the Cenozoic oxygen isotopic record: Paleocene-Eocene Thermal Maximum, Eocene-Oligocene Transition, Oligocene-Miocene Boundary, and the Middle Miocene Climate Optimum. We further describe and causally interpret the following features: Paleocene-Eocene warming trend, the two-step, long-term Eocene cooling, and the changes within the most recent interval (Miocene-Pliocene). We review the scope and methods of constructing Cenozoic stacks of benthic oxygen isotope records and present two new latitudinal stacks, which capture besides global ice volume also bottom water temperatures at low (less than 30°) and high latitudes. This review concludes with an identification of future directions for data collection, statistical method development, and climate modeling.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Benthic foraminiferal delta13C data from site 502 in the Caribbean Sea (sill depth ?1800 m) indicate that throughout the past 2.6 m.y., glacial delta13C values in the middepth Atlantic were higher during glaciations than interglaciations. This is interpreted as indicating a greater proportion of Upper North Atlantic Deep Water (UNADW) relative to southern source waters during glaciations. The contribution of UNADW during interglaciations to the middepth Atlantic remained approximately constant, and the contribution during glaciations may have been as much as 10 % higher in the late Pleistocene than in the late Pliocene. This small increase is in striking contrast to the much larger decrease in glacial Lower North Atlantic Deep Water (LNADW) contribution relative to southern sources, from about 80% to about 20%, that occurred over the past 2.6 m.y. Glacial intensification over the past 2.6 m.y. was probably coupled with a decrease in northward heat transport by the upper limb of the North Atlantic circulation cell, as was previously suggested on the basis of a LNADW record alone. Late Pleistocene (1 Ma-present) delta13C values in the Caribbean Sea were approximately 0.2? higher than they were from 2.6 to 2.0 Ma. The delta13C rise is not due to an increase in the mean ocean delta13C value, nor can it be entirely attributed to an increase in the proportion of high-delta13C source waters. An increase in the delta13C value of the surface source waters must have contributed to the delta13C rise.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Instrumental climate observations provide robust records of global land and ocean temperatures during the twentieth century. Unlike for temperature, continuous salinity observations in the surface ocean are scarce prior to 1970, and the magnitude of salinity changes during the twentieth century is largely unknown. Surface ocean salinity is a major component in climate dynamics, as it influences ocean circulation and water mass formation. Here we present an annually resolved reconstruction of salinity variations in the surface waters of the western subtropical North Pacific Ocean since 1873, based on bimonthly records of d18O, Sr/Ca, and U/Ca in a coral from the Ogasawara Islands. The reconstruction indicates that an abrupt regime shift toward fresher surface ocean conditions occurred between 1905 and 1910. Observational atmospheric data suggest that the abrupt freshening was associated with a weakening of the winds that drive the Kuroshio Current system and the associated subtropical gyre circulation. We note that the abrupt early-twentieth-century freshening in the western subtropical North Pacific precedes abrupt climate change in the northern North Atlantic by a few years. The potential for abrupt regime shifts in surface ocean salinity should be considered in climate predictions for the coming decades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Well-preserved diatoms are present in high sedimentation rate Pleistocene cores retrieved on Ocean Drilling Program (ODP) Legs 151, 152, 162 and IMAGES cruises of R/V Marion Dufresne from the North Atlantic. Investigation of the stratigraphic occurrence of diatom species shows that the youngest diatom event observed in the area is the last occurrence (LO) of Proboscia curvirostris (Jousé) Jordan and Priddle. P. curvirostris is a robust species that can easily be identified in the sediments, and therefore can be a practical biostratigraphic tool. We have mapped its areal distribution, and found that it stretches from 40°N to 80°N in the North Atlantic. Further, we have correlated the LO P. curvirostris to the oxygen isotope records of six cores to refine the age of this biostratigraphic event. The extinction of P. curvirostris is latitudinally diachronous through Marine Isotope Stages (MIS) 9 to 8 within the North Atlantic. This is closely related to the paleoceanography of the area. P. curvirostris first disappeared within interglacial MIS 9 (324 ka) from the northern areas that are most sensitive to climatic forcing, like the East Greenland current and the sea-ice margin. It survived in mid-North Atlantic until the conditions of the MIS 8 (glaciation) became too severe (260 ka). In the North Pacific at ODP Site 883 the LO P. curvirostris falls within MIS 8. The observed overlap in age between the North Atlantic and the North Pacific strongly suggests that the extinction of P. curvirostris is synchronous between these oceans.