985 resultados para cultural indicators
Resumo:
Nearly all psychological research on basic cognitive processes of category formation and reasoning uses sample populations associated with large research institutions in technologically-advanced societies. Lopsided attention to a select participant pool risks biasing interpretation, no matter how large the sample or how statistically reliable the results. The experiments in this article address this limitation. Earlier research with urban-USA children suggests that biological concepts are (1) thoroughly enmeshed with their notions of naive psychology, and (2) strikingly human-centered. Thus, if children are to develop a causally appropriate model of biology, in which humans are seen as simply one animal among many, they must undergo fundamental conceptual change. Such change supposedly occurs between 7 and 10 years of age, when the human-centered view is discarded. The experiments reported here with Yukatek Maya speakers challenge the empirical generality and theoretical importance of these claims. Part 1 shows that young Maya children do not anthropocentrically interpret the biological world. The anthropocentric bias of American children appears to owe to a lack of cultural familiarity with non-human biological kinds, not to initial causal understanding of folkbiology as such. Part 2 shows that by age of 4-5 (the earliest age tested in this regard) Yukatek Maya children employ a concept of innate species potential or underlying essence much as urban American children seem to, namely, as an inferential framework for understanding the affiliation of an organism to a biological species, and for projecting known and unknown biological properties to organisms in the face of uncertainty. Together, these experiments indicate that folkpsychology cannot be the initial source of folkbiology. They also underscore the possibility of a species-wide and domain-specific basis for acquiring knowledge about the living world that is constrained and modified but not caused or created by prior nonbiological thinking and subsequent cultural experience.
Resumo:
The state disturbance induced by locally measuring a quantum system yields a signature of nonclassical correlations beyond entanglement. Here, we present a detailed study of such correlations for two-qubit mixed states. To overcome the asymmetry of quantum discord and the unfaithfulness of measurement-induced disturbance (severely overestimating quantum correlations), we propose an ameliorated measurement-induced disturbance as nonclassicality indicator, optimized over joint local measurements, and we derive its closed expression for relevant two-qubit states. We study its analytical relation with discord, and characterize the maximally quantum-correlated mixed states, that simultaneously extremize both quantifiers at given von Neumann entropy: among all two-qubit states, these states possess the most robust quantum correlations against noise.
Resumo:
Regional groundwater flow in high mountainous terrain is governed by a multitude of factors such as geology, topography, recharge conditions, structural elements such as fracturation and regional fault zones as well as man-made underground structures. By means of a numerical groundwater flow model, we consider the impact of deep underground tunnels and of an idealized major fault zone on the groundwater flow systems within the fractured Rotondo granite. The position of the free groundwater table as response to the above subsurface structures and, in particular, with regard to the influence of spatial distributed groundwater recharge rates is addressed. The model results show significant unsaturated zones below the mountain ridges in the study area with a thickness of up to several hundred metres. The subsurface galleries are shown to have a strong effect on the head distribution in the model domain, causing locally a reversal of natural head gradients. With respect to the position of the catchment areas to the tunnel and the corresponding type of recharge source for the tunnel inflows (i.e. glaciers or recent precipitation), as well as water table elevation, the influence of spatial distributed recharge rates is compared to uniform recharge rates. Water table elevations below the well exposed high-relief mountain ridges are observed to be more sensitive to changes in groundwater recharge rates and permeability than below ridges with less topographic relief. In the conceptual framework of the numerical simulations, the model fault zone has less influence on the groundwater table position, but more importantly acts as fast flow path for recharge from glaciated areas towards the subsurface galleries. This is in agreement with a previous study, where the imprint of glacial recharge was observed in the environmental isotope composition of groundwater sampled in the subsurface galleries. Copyright © 2012 John Wiley & Sons, Ltd.
Resumo:
Background: Studies of cross-cultural variations in the perception of emotion have typically compared rates of recognition of static posed stimulus photographs. That research has provided evidence for universality in the recognition of a range of emotions but also for some systematic cross-cultural variation in the interpretation of emotional expression. However, questions remain about how widely such findings can be generalised to real life emotional situations. The present study provides the first evidence that the previously reported interplay between universal and cultural influences extends to ratings of natural, dynamic emotional stimuli.
Methodology/Principal Findings: Participants from Northern Ireland, Serbia, Guatemala and Peru used a computer based tool to continuously rate the strength of positive and negative emotion being displayed in twelve short video sequences by people from the United Kingdom engaged in emotional conversations. Generalized additive mixed models were developed to assess the differences in perception of emotion between countries and sexes. Our results indicate that the temporal pattern of ratings is similar across cultures for a range of emotions and social contexts. However, there are systematic differences in intensity ratings between the countries, with participants from Northern Ireland making the most extreme ratings in the majority of the clips.
Conclusions/Significance: The results indicate that there is strong agreement across cultures in the valence and patterns of ratings of natural emotional situations but that participants from different cultures show systematic variation in the intensity with which they rate emotion. Results are discussed in terms of both ‘in-group advantage’ and ‘display rules’ approaches. This study indicates that examples of natural spontaneous emotional behaviour can be used to study cross-cultural variations in the perception of emotion.
Resumo:
Testate amoebae have been used widely as a proxy of hydrological change in ombrotrophic peatlands, although their response to abiotic controls in other types of mire and fenland palaeo-environments is less well understood. This paper examines the response of testate amoebae to hydroseral and other environmental changes at Mer Bleue Bog, Ontario, Canada, a large ombrotrophic peatland, which evolved from a brackish-water embayment in the early Holocene. Sediments, plant macrofossils and diatoms examined from a 5.99 m core collected from the dome of the bog record six stages of development: i) a quiet, brackish-water riverine phase (prior to ca. 8500 cal BP); ii) a shallow lake (ca. 8500–8200 cal BP); iii) fen (8200–7600 cal BP); iv) transitional mire (7600–6900 cal BP); v) pioneer raised mire (6900–4450 cal BP); and vi) ombrotrophic bog (4450 cal BP-present).
Testate amoebae, notably small (<25 µm diameter) specimens of Centropyxis aculeata type, first appear in low abundances in sediments ascribed to the lacustrine phase. Diatoms from the same horizons record a shallowing in water depth, a decline in salinity and the development of emergent macrophytic vegetation, which may have provided favourable conditions for testate amoeba colonization. The testate amoeba communities of the inferred fen phase are more diverse and include centropyxids, cyclopyxids, Arcellidae and Hyalospheniidae, although the assemblages show some differences to those recently reported in modern European fen environments. The Fen–Bog Transition (FBT) is also dominated by C. aculeata type. The change in testate amoeba communities around this key transition is apparent in the results of Detrended Correspondence Analysis (DCA), and appears to reflect a latent nutrient gradient and a secondary moisture gradient. DCA analyses of plant macrofossil remains around the FBT show a similar trend, although the sensitivity of the two proxies to the inferred environmental changes differs. Comparisons with other regional mid-Holocene peatland records confirm the important influence of reduced effective precipitation on the testate amoeba communities during the initiation and development of Sphagnum-dominated, raised bog communities.