986 resultados para critical force
Resumo:
The interaction between integrin macrophage differentiation antigen associated with complement three receptor function (Mac-1) and intercellular adhesion molecule-1 (ICAM-1), which is controlled tightly by the ligand-binding activity of Mac-1, is central to the regulation of neutrophil adhesion in host defense. Several "inside-out" signals and extracellular metal ions or antibodies have been found to activate Mac-1, resulting in an increased adhesiveness of Mac-1 to its ligands. However, the molecular basis for Mac-1 activation is not well understood yet. In this work, we have carried out a single-molecule study of Mac-1/ICAM-1 interaction force in living cells by atomic force microscopy (AFM). Our results showed that the binding probability and adhesion force of Mac-1 with ICAM-1 increased upon Mac-1 activation. Moreover, by comparing the dynamic force spectra of different Mac-1 mutants, we expected that Mac-1 activation is governed by the downward movement of its alpha 7 helix. (c) 2007 Elsevier Inc. All rights reserved.
Resumo:
The aim of this paper is to explore the potential role that quality objectives, particularly when backed by statutory force, may play in the sustainable management of river water quality. Economic valuation techniques are discussed, as well as the theory of "critical natural capital". A brief history of water quality legislation includes the implementation of the National Water Council classification in 1979, and the statutory water quality objectives introduced under the Water Resources Act 1991.
Resumo:
The surface resistance and the critical magnetic field of lead electroplated on copper were studied at 205 MHz in a half-wave coaxial resonator. The observed surface resistance at a low field level below 4.2°K could be well described by the BCS surface resistance with the addition of a temperature independent residual resistance. The available experimental data suggest that the major fraction of the residual resistance in the present experiment was due to the presence of an oxide layer on the surface. At higher magnetic field levels the surface resistance was found to be enhanced due to surface imperfections.
The attainable rf critical magnetic field between 2.2°K and T_c of lead was found to be limited not by the thermodynamic critical field but rather by the superheating field predicted by the one-dimensional Ginzburg-Landau theory. The observed rf critical field was very close to the expected superheating field, particularly in the higher reduced temperature range, but showed somewhat stronger temperature dependence than the expected superheating field in the lower reduced temperature range.
The rf critical magnetic field was also studied at 90 MHz for pure tin and indium, and for a series of SnIn and InBi alloys spanning both type I and type II superconductivity. The samples were spherical with typical diameters of 1-2 mm and a helical resonator was used to generate the rf magnetic field in the measurement. The results of pure samples of tin and indium showed that a vortex-like nucleation of the normal phase was responsible for the superconducting-to-normal phase transition in the rf field at temperatures up to about 0.98-0.99 T_c' where the ideal superheating limit was being reached. The results of the alloy samples showed that the attainable rf critical fields near T_c were well described by the superheating field predicted by the one-dimensional GL theory in both the type I and type II regimes. The measurement was also made at 300 MHz resulting in no significant change in the rf critical field. Thus it was inferred that the nucleation time of the normal phase, once the critical field was reached, was small compared with the rf period in this frequency range.
Resumo:
A new approach to magnetic resonance was introduced in 1992 based upon detection of spin-induced forces by J. Sidles [1]. This technique, now called magnetic resonance force microscopy (MRFM), was first demonstrated that same year via electron paramagnetic resonance (EPR) by D. Rugar et al. [2]. This new method combines principles of magnetic resonance with those of scanned probe technology to detect spin resonance through mechanical, rather than inductive, means. In this thesis the development and use of ferromagnetic resonance force microscopy (FMRFM) is described. This variant of MRFM, which allows investigation of ferromagnetic samples, was first demonstrated in 1996 by Z. Zhang et al. [3]. FMRFM enables characterization of (a) the dynamic magnetic properties of microscale magnetic devices, and (b) the spatial dependence of ferromagnetic resonance within a sample. Both are impossible with conventional ferromagnetic resonance techniques.
Ferromagnetically coupled systems, however, pose unique challenges for force detection. In this thesis the attainable spatial resolution - and the underlying physical mechanisms that determine it - are established. We analyze the dependence of the magnetostatic modes upon sample dimensions using a series of microscale yttrium iron garnet (YIG) samples. Mapping of mode amplitudes within these sample is attained with an unprecedented spatial resolution of 15μm. The modes, never before analyzed on this scale, fit simple models developed in this thesis for samples of micron dimensions. The application of stronger gradient fields induces localized perturbation of the ferromagnetic resonance modes. The first demonstrations of this effect are presented in this study, and a simple theoretical model is developed to explain our observations. The results indicate that the characteristics of the locally-detected ferromagnetic modes are still largely determined by the external fields and dimensions of the entire sample, rather than by the localized interaction volume (i.e., the locale most strongly affected by the local gradient field). Establishing this is a crucial first step toward understanding FMRFM in the high gradient field limit where the dispersion relations become locally determined. In this high gradient field regime, FMRFM imaging becomes analogous with that of EPR MRFM.
FMRFM has also been employed to characterize magnetic multilayers, similar to those utilized in giant magnetoresistance (GMR) devices, on a lateral scale 40 x 40μm. This is orders of magnitude smaller than possible via conventional methods. Anisotropy energies, thickness, and interface qualities of individual layers have been resolved.
This initial work clearly demonstrates the immense and unique potential that FMRFM offers for characterizing advanced magnetic nanostructures and magnetic devices.
Resumo:
The importance of ponds for biodiversity in Britain has been demonstrated by a number of studies. However, most of the research and interest has been directed at permanent waterbodies, and temporary ponds have been largely neglected. In this article the author present some preliminary findings from a project which aims to fill some of the many gaps in our knowledge of temporary ponds in Britain. The project, which runs for three years until the end of 2001, aims specifically to investigate the ecology of temporary ponds in England and Wales by describing (i) their wetland plant and macroinvertebrate communities, (ii) their physico-chemical characteristics, and (iii) their value as a biodiversity resource. The article focuses on the assessment of temporary ponds as a biodiversity resource and briefly considers aspects of species richness, rarity and distinctiveness. Where possible, temporary ponds are compared with other waterbody types, mainly permanent ponds from the National Pond Survey (NPS), to give the results a broader context.
Resumo:
The ability to sense mechanical force is vital to all organisms to interact with and respond to stimuli in their environment. Mechanosensation is critical to many physiological functions such as the senses of hearing and touch in animals, gravitropism in plants and osmoregulation in bacteria. Of these processes, the best understood at the molecular level involve bacterial mechanosensitive channels. Under hypo-osmotic stress, bacteria are able to alleviate turgor pressure through mechanosensitive channels that gate directly in response to tension in the membrane lipid bilayer. A key participant in this response is the mechanosensitive channel of large conductance (MscL), a non-selective channel with a high conductance of ~3 nS that gates at tensions close to the membrane lytic tension.
It has been appreciated since the original discovery by C. Kung that the small subunit size (~130 to 160 residues) and the high conductance necessitate that MscL forms a homo-oligomeric channel. Over the past 20 years of study, the proposed oligomeric state of MscL has ranged from monomer to hexamer. Oligomeric state has been shown to vary between MscL homologues and is influenced by lipid/detergent environment. In this thesis, we report the creation of a chimera library to systematically survey the correlation between MscL sequence and oligomeric state to identify the sequence determinants of oligomeric state. Our results demonstrate that although there is no combination of sequences uniquely associated with a given oligomeric state (or mixture of oligomeric states), there are significant correlations. In the quest to characterize the oligomeric state of MscL, an exciting discovery was made about the dynamic nature of the MscL complex. We found that in detergent solution, under mild heating conditions (37 °C – 60 °C), subunits of MscL can exchange between complexes, and the dynamics of this process are sensitive to the protein sequence.
Extensive efforts were made to produce high diffraction quality crystals of MscL for the determination of a high resolution X-ray crystal structure of a full length channel. The surface entropy reduction strategy was applied to the design of S. aureus MscL variants and while the strategy appears to have improved the crystallizability of S. aureus MscL, unfortunately the diffraction qualities of these crystals were not significantly improved. MscL chimeras were also screened for crystallization in various solubilization detergents, but also failed to yield high quality crystals.
MscL is a fascinating protein and continues to serve as a model system for the study of the structural and functional properties of mechanosensitive channels. Further characterization of the MscL chimera library will offer more insight into the characteristics of the channel. Of particular interest are the functional characterization of the chimeras and the exploration of the physiological relevance of intercomplex subunit exchange.
Resumo:
This thesis describes investigations of two classes of laboratory plasmas with rather different properties: partially ionized low pressure radiofrequency (RF) discharges, and fully ionized high density magnetohydrodynamically (MHD)-driven jets. An RF pre-ionization system was developed to enable neutral gas breakdown at lower pressures and create hotter, faster jets in the Caltech MHD-Driven Jet Experiment. The RF plasma source used a custom pulsed 3 kW 13.56 MHz RF power amplifier that was powered by AA batteries, allowing it to safely float at 4-6 kV with the cathode of the jet experiment. The argon RF discharge equilibrium and transport properties were analyzed, and novel jet dynamics were observed.
Although the RF plasma source was conceived as a wave-heated helicon source, scaling measurements and numerical modeling showed that inductive coupling was the dominant energy input mechanism. A one-dimensional time-dependent fluid model was developed to quantitatively explain the expansion of the pre-ionized plasma into the jet experiment chamber. The plasma transitioned from an ionizing phase with depressed neutral emission to a recombining phase with enhanced emission during the course of the experiment, causing fast camera images to be a poor indicator of the density distribution. Under certain conditions, the total visible and infrared brightness and the downstream ion density both increased after the RF power was turned off. The time-dependent emission patterns were used for an indirect measurement of the neutral gas pressure.
The low-mass jets formed with the aid of the pre-ionization system were extremely narrow and collimated near the electrodes, with peak density exceeding that of jets created without pre-ionization. The initial neutral gas distribution prior to plasma breakdown was found to be critical in determining the ultimate jet structure. The visible radius of the dense central jet column was several times narrower than the axial current channel radius, suggesting that the outer portion of the jet must have been force free, with the current parallel to the magnetic field. The studies of non-equilibrium flows and plasma self-organization being carried out at Caltech are relevant to astrophysical jets and fusion energy research.
Resumo:
Coronal mass ejections (CMEs) are dramatic eruptions of large, plasma structures from the Sun. These eruptions are important because they can harm astronauts, damage electrical infrastructure, and cause auroras. A mysterious feature of these eruptions is that plasma-filled solar flux tubes first evolve slowly, but then suddenly erupt. One model, torus instability, predicts an explosive-like transition from slow expansion to fast acceleration, if the spatial decay of the ambient magnetic field exceeds a threshold.
We create arched, plasma filled, magnetic flux ropes similar to CMEs. Small, independently-powered auxiliary coils placed inside the vacuum chamber produce magnetic fields above the decay threshold that are strong enough to act on the plasma. When the strapping field is not too strong and not too weak, expansion force build up while the flux rope is in the strapping field region. When the flux rope moves to a critical height, the plasma accelerates quickly, corresponding to the observed slow-rise to fast-acceleration of most solar eruptions. This behavior is in agreement with the predictions of torus instability.
Historically, eruptions have been separated into gradual CMEs and impulsive CMEs, depending on the acceleration profile. Recent numerical studies question this separation. One study varies the strapping field profile to produce gradual eruptions and impulsive eruptions, while another study varies the temporal profile of the voltage applied to the flux tube footpoints to produce the two eruption types. Our experiment reproduced these different eruptions by changing the strapping field magnitude, and the temporal profile of the current trace. This suggests that the same physics underlies both types of CME and that the separation between impulsive and gradual classes of eruption is artificial.
Resumo:
We study the behavior of granular materials at three length scales. At the smallest length scale, the grain-scale, we study inter-particle forces and "force chains". Inter-particle forces are the natural building blocks of constitutive laws for granular materials. Force chains are a key signature of the heterogeneity of granular systems. Despite their fundamental importance for calibrating grain-scale numerical models and elucidating constitutive laws, inter-particle forces have not been fully quantified in natural granular materials. We present a numerical force inference technique for determining inter-particle forces from experimental data and apply the technique to two-dimensional and three-dimensional systems under quasi-static and dynamic load. These experiments validate the technique and provide insight into the quasi-static and dynamic behavior of granular materials.
At a larger length scale, the mesoscale, we study the emergent frictional behavior of a collection of grains. Properties of granular materials at this intermediate scale are crucial inputs for macro-scale continuum models. We derive friction laws for granular materials at the mesoscale by applying averaging techniques to grain-scale quantities. These laws portray the nature of steady-state frictional strength as a competition between steady-state dilation and grain-scale dissipation rates. The laws also directly link the rate of dilation to the non-steady-state frictional strength.
At the macro-scale, we investigate continuum modeling techniques capable of simulating the distinct solid-like, liquid-like, and gas-like behaviors exhibited by granular materials in a single computational domain. We propose a Smoothed Particle Hydrodynamics (SPH) approach for granular materials with a viscoplastic constitutive law. The constitutive law uses a rate-dependent and dilation-dependent friction law. We provide a theoretical basis for a dilation-dependent friction law using similar analysis to that performed at the mesoscale. We provide several qualitative and quantitative validations of the technique and discuss ongoing work aiming to couple the granular flow with gas and fluid flows.