999 resultados para concentration quenching


Relevância:

20.00% 20.00%

Publicador:

Resumo:

[GRAPHICS]This work proposes a combined swelling-electron paramagnetic resonance (EPR) approach aiming at determining some unusual polymer solvation parameters relevant for chemical processes occurring inside beads. Batches of benzhydrylamine-resin (BHAR), a copolymer of styrene-1% divinylbenzene containing phenylmethylamine groups were, labeled with the paramagnetic amino acid 2,2,6,6-tetramethylpiperidine-1-oxyl-4-amine-4-carboxylic acid (TOAC), and their swelling properties and EPR spectra were examined in DCM and DMF. By taking into account the BHARs labeling degrees, the corresponding swelling values, and some polymer structural characteristics, it was possible to calculate polymer swelling parameters, among them, the volume and the number of sites per bead, site-site distances and site concentration. The latter values ranged from 17 to 170 angstrom and from 0.4 to 550 mM, respectively. EPR spectroscopy was applied to validate the multistep calculation strategy of these swelling parameters. Spin-spin interaction was detected in the labeled resins at site-site distances less than approximately 60 A or probe concentrations higher than approximately 1 x 10(-2) M, in close agreement with the values obtained for the spin probe free in solution. Complementarily, the yield of coupling reactions in different resins indicated that the greater the inter-site distance or the lower the site concentration, the faster the reaction. The results suggested that the model and the experimental measurements developed for the determination of solvation parameters represent a relevant step forward for the deeper understanding and improvement of polymer-related processes.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Photoacoustic spectroscopy was used to determine the critical distance for electron transfer from porphyrin to quinone molecules randomly dispersed in a polymeric matrix. An enhancement of the porphyrin signal was observed as the quinone concentration was increased. The data was analyzed according to the Perrin model [1] and it was found that the electron transfer occurred if the prophyrin-quinone distance was less than 33 Angstrom. To confirm the validity of the method, the fluorescence quenching was also measured for the samples. In this case, the same critical distance was obtained.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Alkali niobium tellurite glasses have been prepared and some of their properties measured by differential scanning calorimetry and Raman scattering. The vitreous domain was established in the pseudo ternary phases diagram for the system TeO2-Nb2O5-(0.5K(2)O-0.5Li(2)O). Raman scattering shows that for samples in the TeO2 rich part of the phase diagram the vitreous structure is composed essentially of (TeO4) units connected by the vertices, as in the alpha-TeO2 crystal. The addition of alkali and niobium oxides causes depolymerization to occur with structures composed essentially of (TeO3) and (NbO6) units. Samples with the composition (mol%) 80TeO(2)-10Nb(2)O(5)-5K(2)O-5Li(2)O, stable against crystallization, were prepared containing up to 10% mol Nd3+. The addition of this oxide increases the rigidity of the vitreous network shifting characteristic temperatures to higher temperatures. For the 10% Nd3+ sample amorphous phase separation is assumed to exist from the observation of two glass transition temperatures. Spectroscopic properties such as Judd-Ofelt Omega(lambda) intensity parameters, radiative emission probabilities, and induced emission cross sections were calculated. From these results and also from the emission quenching observed as a function of Nd3+ concentration, we suggest that these glasses could be utilized in optical amplifying devices. (C) 1999 Elsevier B.V. B.V. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

In potentiometric-flow systems, linear-potential responses for logarithmic concentrations can be attained for first-(or pseudo-first-) order reactions in which the monitored chemical species react with the analyte during a fixed time interval. To demonstrate this property, the determination of glycerol based on its oxidation by periodate and potentiometric monitoring of the remaining periodate was selected. Influence of reagent concentration and timing on the linearity of the analytical curve were investigated. A mathematical treatment was derived, and potentialities/limitations of the approach were outlined. The system was applied to analysis of soap and lixivia samples. The analytical curve within 200 and 2000 mg L-1 (r = 0.99975; n = 5) was described as E = 8.166 + 0.0478 (glycerol). The sample throughput was 100 h(-1), and a measurement repeatability within 0.5 mV was always observed. By applying a t-test, there was no statistical difference between the results obtained by the proposed procedure and by iodimetric titration at the 95% confidence level. (C) 2000 John Wiley & Sons, Inc. Lab Robotics and Automation 12:41-45, 2000.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Heat capacities of binary aqueous solutions of different concentrations of sucrose, glucose, fructose, citric acid, malic acid, and inorganic salts were measured with a differential scanning calorimeter in the temperature range from 5degreesC to 65degreesC. Heat capacity increased with increasing water content and increasing temperature. At low concentrations, heat capacity approached that of pure water, with a less pronounced effect of temperature, and similar abnormal behavior of pure water with a minimum around 30degreesC-40degreesC. Literature data, when available agreed relatively well with experimental values. A correction factor, based on the assumption of chemical equilibrium between liquid and gas phase in the Differential Scanning Calorimeter, was proposed to correct for the water evaporation due to temperature rise. Experimental data were fitted to predictive models. Excess molar heat capacity was calculated using the Redlich-Kister equation to represent the deviation from the additive ideal model.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The water and sucrose effective diffusion coefficients behavior were studied in potato tubers immersed in aqueous sucrose solution, 50% (w/,A), at 27 degreesC. Water and sucrose concentration profiles were measured as function of the position for 3, 6 and 12 h of immersion. These were adjusted to a mathematical model for three components that take into account the bulk flow in a shrinking tissue and the concentration dependence of the diffusion coefficients.The binary effective coefficients were an order of magnitude lower than those for pure solutions of sucrose. These coefficients show an unusual concentration dependence. Analysis of these coefficients as functions of the concentration and position demonstrates that, cellular tissue promotes high resistance to diffusion in the tuber and also the elastic contraction of material influences the species diffusion. (C) 2003 Elsevier B.V. Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The effect of time of exposure, solution concentration and temperature on the osmotic concentration of banana (slices of 11 mm thickness) was studied in aqueous sucrose solutions. The selectivity of the cellular tissues was reduced by steam blanching the banana slices before osmotic treatment. Effective diffusion coefficients for the loss of water and the increase in sucrose content were determined according to Fick's Law applied to a two-dimensional body; calculated on the basis of the concentration of various components in the liquid phase impenetrating the fruit. These coefficients revealed values similar to binary diffusion coefficients for pure sucrose solutions.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

GaAsSbN/GaAs strained-layer single quantum wells grown on a GaAs substrate by molecular-beam epitaxy with different N concentrations were studied using the photoluminescence (PL) technique in the temperature range from 9 to 296 K. A strong redshift in optical transition energies induced by a small increase in N concentration has been observed in the PL spectra. This effect can be explained by the interaction between a narrow resonant band formed by the N-localized states and the conduction band of the host semiconductor. Excitonic transitions in the quantum wells show a successive red/blue/redshift with increasing temperature in the 2-100 K range. The activation energies of nonradiative channels responsible for a strong thermal quenching are deduced from an Arrhenius plot of the integrated PL intensity. (C) 2003 American Institute of Physics.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Density of binary solutions and combinations of sucrose, glucose, fructose, citric acid, malic acid, pectin, and inorganic salts were measured with an oscillating tube density meter in the temperature range from 10degrees to 60degreesC, at varying concentrations. Density can be predicted with accuracy better than 5 x 10(-5) g cm(-3) using predictive equations obtained by fitting the experimental data. Available literature values agreed well with experimental data. Relations for the excess molar volume of these solutions were derived in terms of mole fraction and temperature. A thermodynamic model for the volumetric analysis of multicomponent aqueous solutions containing electrolyte and non-electrolyte compounds was also proposed. These models can be used for prediction of density of liquid food systems, specially fruit juices and beverages, based on composition and temperature, with high accuracy and without elaborate experimental work.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The maximal lactate steady state (MLSS) is defined as the highest blood lactate concentration that can be maintained over time without a continual blood lactate accumulation. The objective of the present study was to analyze the effects of pedal cadence (50 vs. 100 rev min(-1)) on MLSS and the exercise workload at MLSS (MLSSworkload) during cycling. Nine recreationally active males (20.9 +/- 2.9 years, 73.9 +/- 6.5 kg, 1.79 +/- 0.09 m) performed an incremental maximal load test (50 and 100 rev min(-1)) to determine anaerobic threshold (AT) and peak workload (PW), and between two and four constant submaximal load tests (50 and 100 rev min(-1)) on a mechanically braked cycle ergometer to determine MLSSworkload and MLSS. MLSSworkload was defined as the highest workload at which blood lactate concentration did not increase by more than 1 mM between minutes 10 and 30 of the constant workload. The maximal lactate steady state intensity (MLSSintensity) was defined as the ratio between MLSSworkload and PW. MLSSworkload (186.1 +/- 21.2 W vs. 148.2 +/- 15.5 W) and MLSSintensity (70.5 +/- 5.7% vs. 61.4 +/- 5.1%) were significantly higher during cycling at 50 rev min(-1) than at 100 rev min(-1), respectively. However, there was no significant difference in MLSS between 50 rev min(-1) (4.8 +/- 1.6 mM) and 100 rev min(-1) (4.7 +/- 0.8 mM). We conclude that MLSSworkload and MLSSintensity are dependent on pedal cadence (50 vs. 100 rev min(-1)) in recreationally active individuals. However, this study showed that MLSS is not influenced by the different pedal cadences analyzed.